Overall L0 optimization without M1

E. RICH2

Eduardo Rodrigues (NIKHEF)

315

20m

In short ...

Goal:

CITEN

ACTION 101

-30

> assess the impact of dropping M1 on the overall LO performance

Background:

Mannet

 LO-muon studies proved that efficiency for muon channels can be maintained when dropping M1 provided the muon bandwidth is increased by ~ 60% (Olivier Leroy, 24th Jan. 2004)

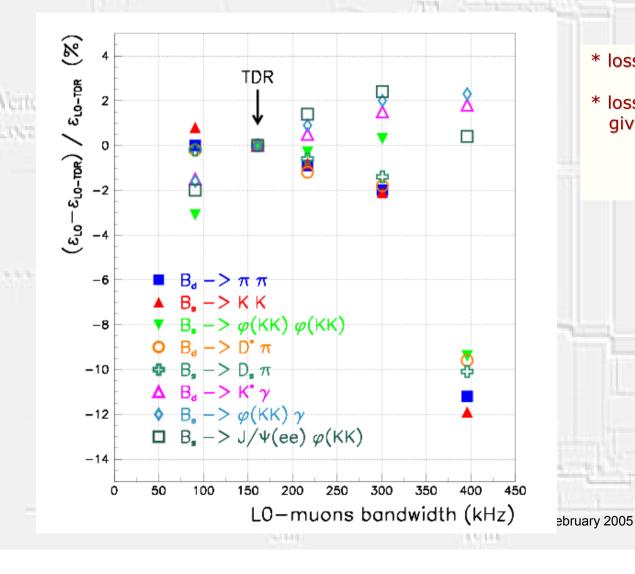
"Global" investigations in 2 perspectives:

3m

> channel efficiencies as a function of muon bandwidth (standard trigger = with M1)

- \Rightarrow at the moment: muon bandwidth \sim 160 kHZ
- → how the L0-efficiencies for hadronic/electromagnetic channels suffer

from increasing the muon bandwidth up to say ~ 300 kHz?


> overall LO optimization without the M1 station

lam

<u>Dependence of the L0 performance</u> <u>on the muon bandwidth</u>

Losses in efficiency wrt TDR values:

- * losses less than 4% up to 300 kHz
- * losses only become significant if muons given a very large share of the total BW
 - * Electromagnetic channels less affected by the h/μ bandwidth division

Note:

läm

- no optimizations done
- each setting is a change in the h/μ BW
- total HCAL+ECAL+MUONS BW = 1 MHz
- at each BW the settings are the same for all channels

20m

2

Single-channel optimization without M1

ICAE

Samples

LHCh

Ventex

ANTIOI DE

- 300

- set of (LHCb) benchmark channels

Mannet

> "representatives" of hadronic / electromagnetic / muon channels

3 RICH

Outcome

Ex.:

- single-channel optimizations with or without M1 give roughly

the same LO-max efficiencies

3m

- > this means are roughly as at the time of the TDR
- > slightly worse for muon channels

(DC'04 data)

20m

Channels	L0 eff. Max. (%) With M1	L0 eff. Max. (%) without M1	
B _d -> ππ	55.0 ± 0.9	54.1 ± 0.9	
B_d -> $J/\Psi(\mu\mu)$ K_s	95.4 ± 0.4	94.5 ± 0.4	
$B_s \rightarrow \phi \gamma$	76.0 ± 1.6	76.2 ± 1.3	

lam

			111	315
L0	bandwidth	division	without M1	
		CHIMBE	- M12	

Optimized cuts:

NOTE:

LHCb

311

St. 16. 16. 16

化化化化化化化化化化化化化

-5m

Vertex

1017701

RICHI

	=====	=====
Optimized L0	cuts	(GeV)
==============	=====	=====
Hadron	=	3.60
Electron	=	2.60
Photon	=	2.70
Pi0 Local	=	4.50
Pi0 Global	=	3.70
Muon	=	1.30
Di-muon	=	1.40
Sum Et	=	5.00
VetoSumPeak2	=	3.00

Channels	L0 eff. (%) With M1	L0 eff. (%) without M1	
$B_d \rightarrow \pi \pi$	51.5 ± 0.9	52.5 ± 0.9	
B _d -> Kπ	52.4 ± 0.8	53.8 ± 0.8	
B _s -> KK	51.6 ± 0.8	52.9 ± 0.8	
$B_d \rightarrow D \star \pi$	49.2 ± 1.0	50.5 ± 1.2	
B_{d} -> J/ $\Psi(\mu\mu)$ K _s	93.5 ± 0.5	93.2 ± 0.5	
B _d -> K*μμ	95.4 ± 0.6	95.2 ± 0.6	
B _s -> μμ	98.1 ± 0.3	98.3 ± 0.3	
B _s -> φγ	69.6 ± 1.7	72.1 ± 1.4	

! The "with M1" eff. should be scaled up slightly as the M. B. retention in DC'04 is at present ~ 900 kHz

1112.11

UVID

(DC'04 data)

ALC: NOTE: N

Magnet

L0 bandwidth division without M1

SPORS

HCAL

Inclusive efficiencies for "no M1" LO trigger and bandwidth optimization

T3 RICH2

Tex.	Channels	HCAL	ECAL	Muons	<u>(DC'04 data)</u>
ater a	$B_d \rightarrow \pi \pi$	44.4 ± 0.9	12.0 ± 0.6	9.3 ± 0.5	$\langle 1 \rangle \langle 1 \rangle$
	B _s -> K K	44.5 ± 0.8	11.5 ± 0.5	10.6 ± 0.5	
	B_d -> J/ $\Psi(\mu\mu)$ K _s	17.6 ± 0.7	6.5 ± 0.5	92.1 ± 0.5	
	B _a -> Κ*μμ	19.0 ± 1.1	7.6 ± 0.8	94.5 ± 0.6	here here here here here here here here
	B _s -> φγ	30.7 ± 1.5	66.3 ± 1.5	11.7 ± 1.0	1111
	0. 13	1.5			117
	W. more reality				
-5m-	Bandwidth on minimum bias events (kHz)	608	231	312	
		/	And the second		19
	was ~ 700 kHz in TDR		Almost doubles compare	ed to TDR	
	5m	Trigger Meeting,	7 th February 2005		Um z

Vertex

AVT101

- 311

Conclusions

M3 M4 M5

For Level-O

Mannet

3m

- staging of the M1 station is not critical !

> losses in efficiency for muon channels can be recovered with a larger

3 RICH

- share of the LO bandwidth being taken by the muon triggers
- > optimization of LO bandwdith division also prevents the hadronic and electromagnetic channels from losses in efficiency

but

- > note that these conclusions are for the nominal luminosity ...
- ... how critical and fast the situation becomes with increasing luminosity needs to be assessed ...

lam

20m