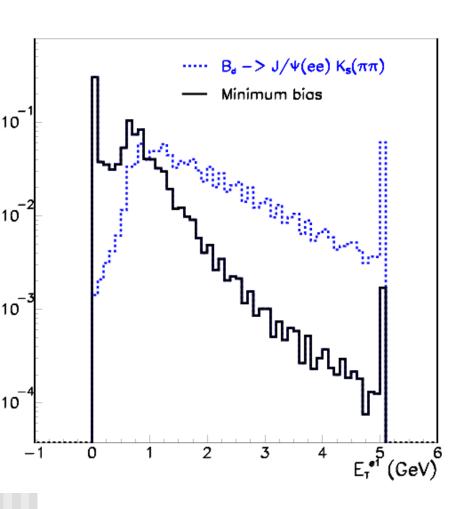


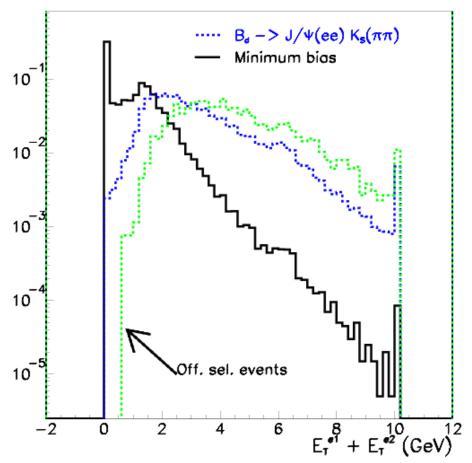
Level-0 with a Di-electron trigger and Alternative Solutions

Eduardo Rodrigues, CERN

- I. Motivations
- II. LO electron candidates
- III. A di-electron trigger at LO and alternatives
 - LODU algorithm with a di-electron trigger
 - An alternative: an "overriding" electron trigger
 - Another alternative: double-threshold electron trigger
- IV. LO Performance with the various scenarios
- V. Conclusions

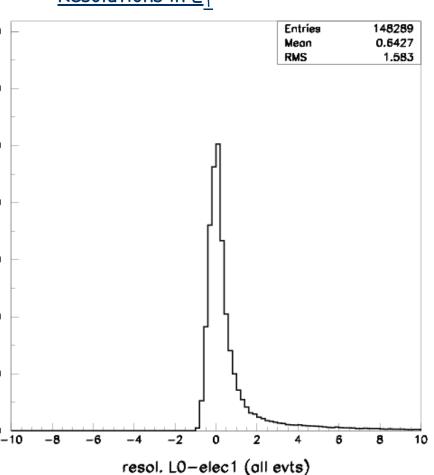
Motivations

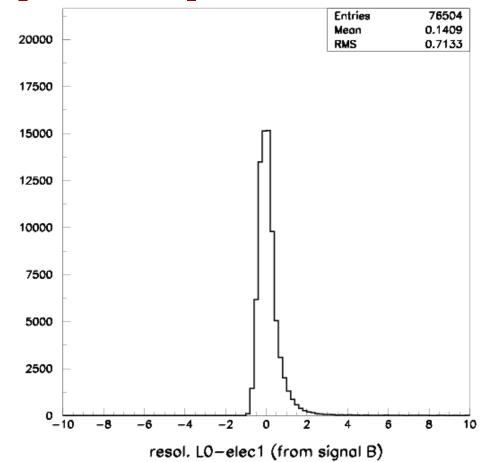

- Di-muon versus di-electron trigger:
 - > di-muon trigger mainly focused on identifying $J/\Psi \rightarrow \mu\mu$ decays from a b-hadron
 - -> is a di-electron trigger for J/Ψ -> ee decays as useful?
- Investigations of "extreme" LODU algorithms:
 - > all "possible" scenarios of LODU algorithms need to be assessed and studied
- Usage of di-electrons at L1 have been investigated:
 - > refer to the note of Aras Papadelis (summer student)
 - -> can the situation be improved by improving the input to L1?



(Di-)electron Distributions

(here $E_T^{e2}=0$ is possible)




Highest-E_T L0-Electron : Resolutions

Resolutions in E_T

Origin of L0 Electrons

Study with the B_d -> $J/\Psi(ee)$ K_s channel

o probabilities for the highest (LO-elec1), second-highest (LO-elec2) and third-highest (LO-elec3)

 E_T LO-electron candidate to come from the signal-B

	All events	L0-pass	Offline selected	L0-pass & offline selected
L0-elec1 from signal B	52 %	62	86	89
L0-elec2 from signal B	28	34	60	60
L0-elec3 from signal B	16	17	27	27
L0-elec1&2 from signal B	19	25	52	53
L0-elec1&3 from signal B	10	11	21	22

-> in ~ 50 % of the LO-pass offline selected events the 2 highest $E_{\underline{T}}$ electron candidates come from the signal B

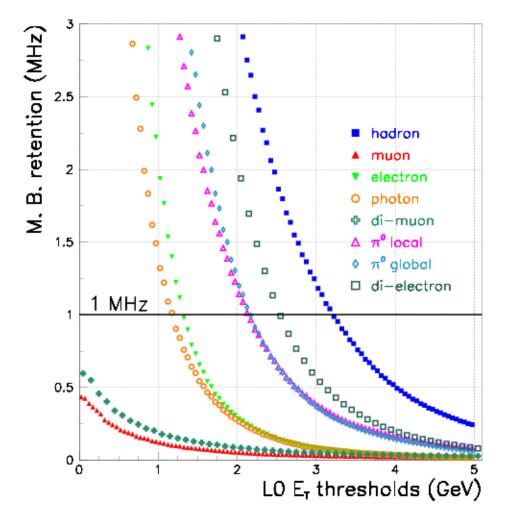
L0DU with Di-electron Trigger

LODU Algorithm with a di-electron trigger

■ LODU algorithm as in the Trigger TDR

+

■ di-electron trigger "à la di-muon trigger"

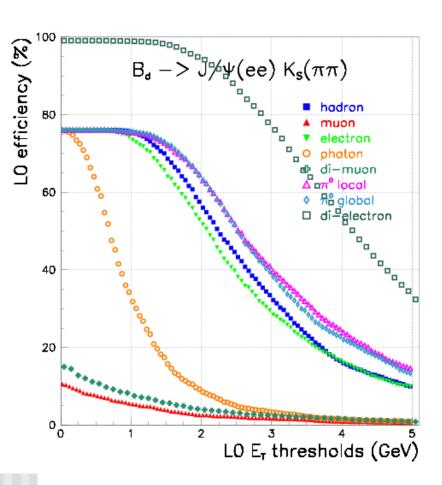

$$(E_T^{ee} = E_T^{e1} + E_T^{e2} \text{ with } E_T^{e2} = 0 \text{ possible})$$

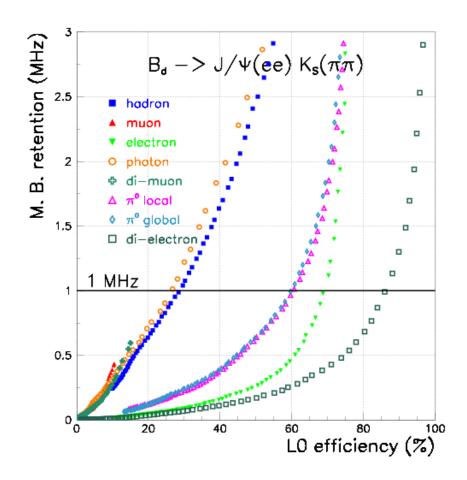
overrides the global event cuts
 (pile-up veto and
 veto and SPD multiplicity cuts)

each curve corresponds to considering
separately the combination

LO trigger = sub-trigger

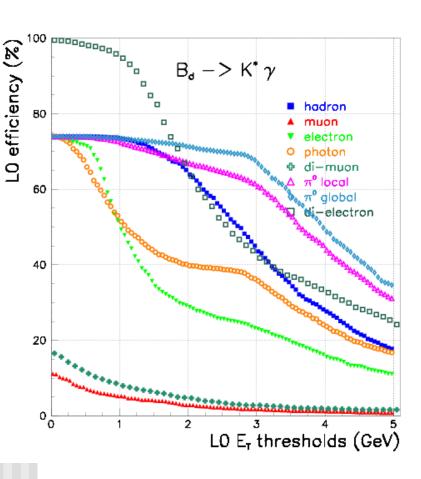
+ pile-up veto & multiplicity cuts

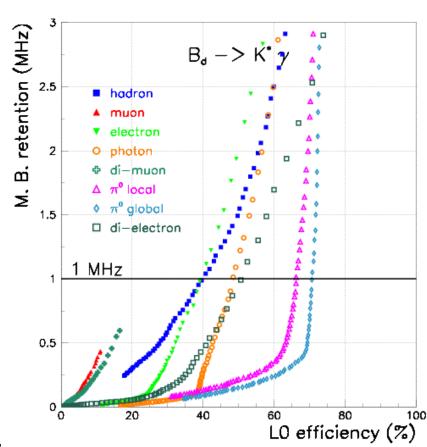



L0 E_t Distributions (I)

- each curve corresponds to considering separately the combination
 - LO trigger = sub-trigger + pile-up veto & multiplicity Cuts
- -> it shows how much one could in principle obtain independently from each trigger

x. efficiency obtainable inclusively by each trigger!

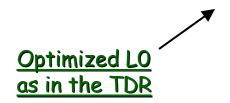


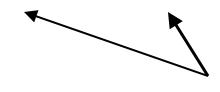


L0 E_t Distributions (II)

Max. efficiency obtainable inclusively by each trigger!

Trig




L0 optimization with Di-electron Trigger (I)

1. Optimizing each channel separately on the LO efficiency ...

Channels	L0 eff. (%) TDR settings	L0 eff. Max. (%) TDR L0	L0 eff. Max. (%) with new di-elec. Trig.
B_{d} -> J/ Ψ (ee) K $_{s}$	48.3	69.7	85.0
B _d -> K* γ	72.9	77.6	86.8
B_d -> J/Ψ(μμ) K_s	89.3	93.0	93.2
B_s -> J/Ψ(μμ) Φ (KK)	89.7	93.0	93.0
Β _d -> ππ	53.6	54.7	56.7
B _s -> D _s K	47.2	48.2	48.2

Max. eff. obtained with separate optimization of each channel

L0 optimization with Di-electron Trigger (II)

2. Combined optimization of LO on the channels below ...

Channels	L0 eff. (%) TDR settings	"Optimal trigger" L0 eff. (%)	Rel. Gain in eff. w.r.t TDR (%)
B_{d} -> J/ Ψ (ee) K_{s}	48.3	70.8	+ 46.6
B _d -> K* γ	72.9	80.2	+ 10.0
B_d -> J/ $\Psi(\mu\mu)$ K _s	89.3	89.6	+ 0.3
B_s -> J/Ψ(μμ) Φ (KK)	89.7	89.8	+ 0.1
Β _d -> ππ	53.6	56.5	+ 5.4
B _s -> D _s K	47.2	47.4	+ 0.4

LO as in the TDR

L0 optimization with Di-electron Trigger (III)

■ LO settings for this new LODU algorithm with a di-electron trigger:

L0 trigger	$\mathbf{E_t}^{had}$	$\mathbf{E}_{\mathrm{T}}^{\mathbf{\mu}}$	$\mathbf{E_T}^{\mathbf{e}}$	$\mathbf{E_T}^{\boldsymbol{\gamma}}$	$\mathbf{E}_{\mathbf{T}}^{\mu\mu}$	$\pi^0_{ m local}$	$\pi^0_{ m global}$	E _t ee
TDR Thresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.5	4.0	
Optimized Thresholds (GeV)	3.8	1.1	3.1	3.0	1.3	4.8	4.8	3.6

& Veto, SPD and Pile-up veto multiplicity cuts fixed at 3, 280 and 112, respectively

L0 optimization with Di-electron Trigger (IV)

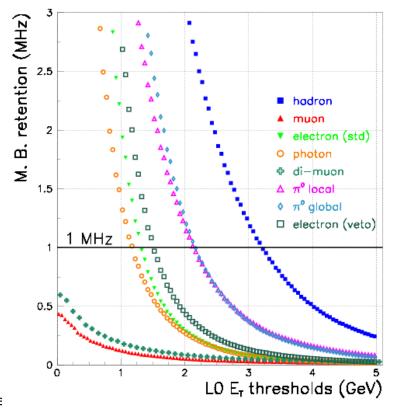
Inclusive efficiencies with new LO trigger and bandwidth optimization

Channels	HCAL	ECAL	Muons
B_{d} -> J/ Ψ (ee) K $_{s}$	18.5	64.9	7.0
B _d -> Κ* γ	30.0	75.2	7.5
B_d -> J/ $\Psi(\mu\mu)$ K _s	16.1	13.0	87.0
$B_s \rightarrow J/\Psi(\mu\mu) \Phi(KK)$	17.5	12.7	87.3
B _d -> ππ	44.7	19.8	6.4
B _s -> D _s K	35.3	16.2	8.5

Bandwidth on minimum bias events (kHz)	593	399	161
--	-----	-----	-----

~ 80 / 300 kHz for e / ee triggers

L0 optimization with "overriding Electron Trigger" (I)



What about an alternative?

simply override the veto and multiplicity cuts with the electron trigger

- > all steps were redone ...
 - ... and after LO optimization ...
- performance for hadronic and muon channels as with the di-electron trigger
- performance for B_d -> K* γ roughly the same (marginally better)
- performance for $\rm B_{\rm d}~$ -> $\rm J/\Psi(ee)~$ $\rm K_{\rm s}$ worse by ~ 10% in relative efficiency
- -> details follow ...

The "electron (std)" and "electron (veto)" refer to the standard and overriding electron triggers, respectively

L0 optimization with "overriding Electron Trigger" (II)

Combined optimization of LO on the channels below ...

Channels	L0 eff. (%) TDR settings	"Optimal trigger" L0 eff. (%)	Rel. Gain in eff. w.r.t TDR (%)
$B_d \rightarrow J/\Psi(ee) K_s$	48.3	66.3	+ 37.3
B _d -> K* γ	72.9	81.8	+ 12.2
$B_d \rightarrow J/\Psi(\mu\mu) K_s$	89.3	89.6	+ 0.3
B _s -> J/Ψ(μμ) Φ (KK)	89.7	89.8	+ 0.1
B _d -> ππ	53.6	56.3	+ 5.0
B _s -> D _s K	47.2	46.7	- 1.1

LO as in the TDR

LO retention on minimum bias events

Bandwidth on minimum bias events (kHz)	553	470	161
--	-----	-----	-----

Trigger Meeting, 19th January 2004

~ 260 kHz for e-trigger

<u>"New LO"</u>

Double-threshold Electron Trigger (I)

- Combination of previous scenarios: a double-threshold electron trigger
 - > a "standard" electron trigger with a low threshold
 - > a higher electron-trigger threshold able to override the veto and multiplicity cuts

- -> all steps were redone ...
 - ... and after LO optimization ...

Double-threshold Electron Trigger (II)

Combined optimization of LO on the channels below ...

Channels	L0 eff. (%) TDR settings	"Optimal trigger" L0 eff. (%)	Rel. Gain in eff. w.r.t TDR (%)
B_d -> J/ Ψ (ee) K_s	48.3	65.7	+ 36.0
B _d -> Κ* γ	72.9	81.5	+ 11.8
B_d -> J/ $\Psi(\mu\mu)$ K _s	89.3	89.8	+ 0.6
B_s -> J/Ψ(μμ) Φ (KK)	89.7	90.0	+ 0.3
B _d -> ππ	53.6	54.4	+ 1.5
B _s -> D _s K	47.2	46.4	- 1.7

LO as in the TDR

Double-threshold Electron Trigger (III)

■ LO settings for this new LODU algorithm with a double-threshold electron trigger:

L0 trigger	$\mathbf{E_t^{had}}$	$\mathbf{E}_{\mathrm{T}}^{\mathbf{\mu}}$	E _T e	$\mathbf{E_T}^{oldsymbol{\gamma}}$	$\mathbf{E}_{\mathbf{T}}^{\mu\mu}$	$\pi^0_{ m local}$	$\pi^0_{ m global}$
TDR Thresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.5	4.0
Optimized Thresholds (GeV)	3.8	1.1	2.2 / 3.2	2.8	1.3	4.9	3.7

& Veto, SPD and Pile-up veto multiplicity cuts fixed at 3, 280 and 112, respectively

■ LO retention rate on minimum bias events

	HCAL	ECAL	Muons
Bandwidth on minimum bias events (kHz)	593	418	161

~ 230 / 110 kHz for e-triggers with low/high threshold

- the second highest E_T LO-electron candidate contains useful information on J/Ψ -> ee decays
- a di-electron trigger significantly improves the LO performance for electromagnetic channels and in particular enhances the efficiency on b -> $J/\Psi + X ->$ (ee) + X decays BUT
- alternative scenarios allow an almost equivalent performance to be achieved which have the advantage of not requiring any changes to the LO hardware design
- Main conclusion:
 - <u>possible improvement w.r.t TDR LO for electromagnetic channels</u> <u>while keeping all the other efficiencies (basically) unchanged</u>
- double-threshold triggers (hadron/electrom./muons) should be further investigated
- (further) details of the study in the forthcoming note LHCb-2004-002