

A Di-electron trigger at Level-0 : first look

Eduardo Rodrigues, CERN

I. Motivations

II. LO Et distributions

- for "electron-dominated" channels
- for some other benchmark signal channels

III. Inclusion of the di-electron trigger in the LODU

- possible scenarios
- IV. Outlook and Future Work

Motivations

Di-muon versus di-electron trigger:

- > di-muon trigger mainly focussed on identifying J/ Ψ -> $\mu\mu$ decays from a b-hadron
 - -> can we do similar for J/Ψ -> ee decays?

Investigations of "extreme" LODU algorithms:

- > on Hans' shopping list
- > in the near future all "possible" scenarios of LODU algorithms need to be assessed and studied
- Studies of di-electrons at L1 have been investigated:
 - > refer to the note of Aras Papadelis (summer student)
 - -> can the situation be improved by improving the input to L1?

1st L0-Electron : Resolutions

Eduardo Rodrigues

Trigger Meeting, 10th November 2003

L0 Retention Rate

L0 E_t Distributions (I)

each curve corresponds to considering separately the combination

LO trigger = sub-trigger + pile-up veto & multiplicity Cuts

-> it shows how much one could in principle obtain independently from each trigger

<u>x. efficiency obtainable inclusively by each trigger!</u>

L0 E_t Distributions (II)

<u>x. efficiency obtainable inclusively by each trigger!</u>

L0 E_t Distributions (III)

x. efficiency obtainable inclusively by each trigger!

Origin of L0 Electrons

 $\underline{B}_{\underline{d}} \rightarrow J/\Psi(ee) K_{\underline{s}}$

Channels	All events	L0-pass	Offline selected	L0-pass & offline selected
L0-elec1 from signal B	52 %	62	86	89
L0-elec2 from signal B	28	34	60	60
L0-elec3 from signal B	16	17	27	27
L0-elec1&2 from signal B	19	25	52	53
L0-elec1&3 from signal B	10	11	21	22

LODU with a Di-electron Trigger

III. Possible scenarios:

di-electron trigger "à la di-muon trigger"

($E_T^{ee} = E_T^{e1} + E_T^{e2}$ with $E_T^{e2} = 0$ possible)

- a real di-electron trigger
- other "exotic" variations ...

> investigation of the simplest implementation:

- a di-electron trigger "à la di-muon trigger"
- overrides the global event cuts

\Rightarrow LO optimization with all E_{T} thresholds free ...

Eduardo Rodrigues

Trigger Meeting, 10th November 2003

L0 optimization with Di-electron Trigger

1. Optimizing each channel separately on the LO efficiency ...

Channels	L0 eff. (%) TDR settings	L0 eff. Max. (%) TDR settings	L0 eff. Max. (%) with di-elec. Trig.
$\rm B_{d}$ -> J/\Psi(ee) $\rm K_{s}$	48.3	69.7	85.0
B _d -> Κ* γ	72.9	77.6	86.7
$B_d \rightarrow J/\Psi(\mu\mu) K_s$	89.3	93.0	93.2
B _d -> ππ	53.6	54.7	56.7

Max. eff. obtained with separate optimization of each channel

(eff. calculated on independent sample)

Outlook and Future Work

- First results are encouraging ...
- Need to investigate exact origin of the LO-electrons
- Need to investigate a true di-electron trigger
- How well can one do re-optimizing LO with a di-electron trigger?
 -> do we loose a lot for other channels (e.g. hadronic channels)?