L0 Bandwidth Division for the TDR with Tagging Information

Eduardo Rodrigues

■ LO optimization set-up:

- using all interactions
- now also with SPD/Pile-up veto multiplicity cuts (set to values obtained by Massi)
- using tagging information
- using only half of the available samples sizes
 - -> ability to cross-check results on an independent sample
- usual philosophy:
 - > vary the LO thresholds and veto height of second peak
 - > maximize the trigger power (details follow)

Tagging Information (I)

- Tagging information available:
 - muon tagging
 - electron tagging
 - opposite-side kaon tagging; same-side kaon tagging (only relevant for B_s decays)
- "Usage" of tagging information:
 - B_d decays:
 use only opposite-side kaon tagging as the kaon tag
 - \blacksquare B_s decays:
 - opposite- and same-side kaon tags are both available
 - → how to combine the tagging information ...?

Tagging Information (II)

■ Combination of tagging information:

- Marta Calvi and Clara Matteuzzi's proposal, LHCb-light meeting, 25/3/2003:
 - ✓ if only 1 tag in the event: take decision on that tag (sign of tag)
 - \checkmark if e + μ tags: chose tag from the highest momentum particle
 - -> left with at most 3 tags ...

$$\mu + K_{os}$$

$$K_{OS} + K_{SS}$$
 -> consider event as untagged if the 2 tags disagree

$$\mu + K_{ss}$$

$$\checkmark \mu + K_{OS} + K_{SS}$$
 -> tag = sum of all tags

Tagging Information (III)

- Combination of tagging information adaptation to the LO optimization:
 - reason: no information on the tagging particles momenta at LO
 - algorithm:

```
TagFlag = 0

IF ( not a Bs ) KSSTag = 0

IF ( (ElTag and Mutag) <> 0 ) ElTag = 0

SumOfTags = ElTag + MuTag + KOSTag + KSSTag

IF ( SumOfTags >= 1 ) TagFlag = 1

IF ( SumOfTags <= -1 ) TagFlag = -1

( TagFlag = 0 / 1 / -1 for untagged / correctly tagged / wrongly tagged events )
```

Tagging Information (IV)

■ General definitions:

■ tagging purity

purity = (# correctly tagged events) / (# tagged events)

tagging efficiency

efficiency = (# tagged events) / (# offline selected events)

tagging quality factor

$$Q = eff \times (2 \times pur - 1)^2$$

... have to be slightly modified for the trigger optimizations ...

Tagging Information (V)

■ Tagging-dependent definitions used in the LO optimization:

- tagging purity

% of triggered selected and tagged events correctly tagged

■ trigger efficiency

% of selected and tagged events that pass LO

combined trigger+tag efficiency

% of selected events that pass LO and are tagged

■ trigger power

 $P = sqrt(comb. eff. \times (2 \times purity - 1)^2)$

L0 optimisation – Combination of Channels

■ Present scenario: some channels representative of each type of measurement

Quantity measured ^(*)	Channels	# off. sel. Events	# off. sel. events with at least 1 tag
β	B_d -> J/ Ψ ($\mu\mu$ /ee) K_s	1295/236	~ 35 %
γ	$B_{d} \rightarrow \pi \pi$ $B_{s} \rightarrow K K$ $B_{s} \rightarrow D_{s} K$ $B_{s} \rightarrow D_{s} \pi$	3374 5553 1059 1354	~ 25 % ~ 38 % ~ 39 % ~ 39 %
2δγ	$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	3863	~ 39 %
Rare decays	B _d -> K* γ	817	

- → each of the 4 groups is optimized separately
- → optimization such that each group has the same loss in performance
 - = equal LHCb performance on each type of measurement
- (*) the " α " measurement is done with the B_d -> $\pi \pi$; not included because of double counting

L0 optimisation without Tagging Information

■ Optimizing on LO efficiency ignoring the tagging information ...

Max. eff.
Obtained with separate optimization of

Channels	Defaut (@ last LHCC presentation) L0 eff. (%)	Optimized LO eff. (%)	
$B_d \rightarrow J/\Psi(\mu\mu) K_s$	82	85	
B_d -> J/ Ψ (ee) K_s	48	56	
Β _d -> ππ	56	62	
B _s -> K K	54	60	
B _s -> D _s K	54	62	
$B_s \rightarrow D_s \pi$	47	50	
$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	83	87	
B _d -> K* γ	68	91	

(L0 thresholds as in 1/2003 but SPD and veto multiplicity cuts added!)

L0 optimisation with Tagging Information

Optimizing each group separately on LO power
 taking into account the tagging information ...

Channels	Defaut (@ last LHCC presentation)		Optimized		
	L0 eff. (%)	L0 power (%)	L0 eff. (%)	L0 power (%)	Min. Bias Ret. (%)
B_d -> J/Ψ(μμ) K_s B_d -> J/Ψ(ee) K_s	46	10	48	11	6.44
$B_{d} \rightarrow \pi \pi$ $B_{s} \rightarrow K K$ $B_{s} \rightarrow D_{s} K$ $B_{s} \rightarrow D_{s} \pi$	58	13	64	14	6.86
$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	83	18	86	19	6.73
B _d -> Κ* γ	68	82	89	94	6.47

L0 Bandwidth Division

■ LO cuts after optimization:

- → trigger power maximization difficult to converge due to
 - quality factor from the tagging
 - control of the minimum bias retention rate given a set of thresholds provided by MINUIT
 - many variables and poor statistics

Work still in progress ...

Final Remarks

- Statistics for several representative signal channels:
 - · not always enough to perform an efficient and more reliable optimization
 - \cdot inclusion of tagging further reduced the samples sizes by $\sim 1/3$
 - → more statistics would be preferable in the future ...
- Tagging information:
 - · if tagging experts realise this is rather relevant
 - → provide in the future the momenta of the tagging particles (to apply the algorithm proposed by Marta and Clara) ...