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PlanPlan
Motivation:

Revisit the tracking code to try to improve the design
Unify code on/off line and define an interface for the clients

Define a Track! (for on/off line)
Define data and tools base classes for and tracking developers and clients

Method:
Modify the current code adiabatically
Reusing almost all the code: “adapting” and not “writing new code”

Organization:
Task Force (G. Raven) to:

‘define the classes, requirements and implementation constrains’
Plan:

Step I: Interfaces for clients
Track, State, ITrackExtrapolator

Step II: Tracking interfaces 
Measurement, Node, ITrackProjector, ITrackKalmanFilter

Scale:
6 months



Step I: Track, State, (the most regarded classesStep I: Track, State, (the most regarded classes……))

Track

A TRACK:

bitfield-flag: type, history, historyfit,  status and 
flags

chi2/ndof, ndof: quality of the fit

<State*> :“transient” states and physic state

<Measurement*> : 

<Node*> : (aggregate state-measurement => 
residual)

<LHCbID>: link MC, Clusters (measurements)

Methods:

Access to physic state: p,pt, slopes, position

Access states: at z, plane, LOCATION

Persistency:

bitfield-flag, quality, physic state and LHCbIDs

the rest on demand!

State

A STATE:

bitfield-flag: type, location

state-vector, covariance, z

Methods:

Access to physics contents: pt(),p()

ITrackExtrapolator
A Extrapolator: extrapolate a Track/State

Main method: propagate(state, z)

Methods:

propagate track, state to z

in the way: propagate to plane, line, point

physics access: p,pt…



Step II: Measurement, Node, Projector (the poor brothersStep II: Measurement, Node, Projector (the poor brothers……))

Measurement
A Measurement:

bitfield-flag: type  (ie RVelo)

measure, error (double)

“z” and LHCbID

ITrackProjector
A Projector: Project a state into a measurement

Main method: project(State, Measurement)

Internally deals with the Alignment/Calibration

(I think) it accept the two approaches:

I) global-local-global; II) global

Methods:

residual, chi2, node, ProjectionMatrix (H)Node

A Node:

type (I.e RVelo)

Measurement* (“refined”)

State*

residual, error

Methods:

chi2(), …

Internal?…

Play and we will see…

IKalmanFilter
A KalmanFilter (interface)

methods: 

fit(Track,State seed);

filter(Track,State seed);

filter(State, Measurement) 



The packages (quick look)The packages (quick look)……

C: compiles (Track version 13/5/5)

T: preliminary tested, 

P: exposed to Python

W: work on progress

…: next…

TrackEvent

Event/

CPT TrConverters

Tr/

CT

TrackExtrapolators CPT

TrackFitEvent CP

TrackProjectors C

TrackTools W

TrackFitter CW

TrackIdealPR CT

TrackPython CPT

TrackSimulator …

TrgConverters

Trg/

CT

TriggerVelo W…

TriggerForward …

TriggerVeloTT …

SoEvent

Vis/

CW



The packagesThe packages……
Event/

TrackEvent:
Track, State, Measurement, Node
TrackKeys, StateKeys

– enums for the flags…

Tr/
TrConverters

TrFitTrack2TrackConv, Track2TrFitTrackConv
– Algorithms to convert: TrFitTrack <-> Track

TrackExtrapolators
Track<T>Extrapolator: 

– T: Linear, Parabolic, FastParabolic, Herab, (FirstClever-> Master)
TrackFitEvent

<T>Measurement, FitNode, MeasurementProvider
– T: OT,VeloPhi,VeloR,IT

• the
– FitNode: Node for the Kalman Filter 
– MeasurementProvider: 

• returns a Measurement from a LHCbID
• to be move to Tr/TrackTools



The packages IIThe packages II
Tr/

TrackIdealPR:
TrueTrackCreators

– Algorithm: From MCParticles to Clusters to LHCbID to Measurements
TrackProjectors

<T>Projector
– VeloR,VeloPhi,IT,OT and Master

• Reusing the code from MeasurmentOnTrack
– The master projector projects any measurement

• it dispacthes the projection to the specific projector, project(State,Measurement)

TrackTools
Interfaces:

– ITrackExtrapolator,ITrackProjector, ITrackKalmanFilter
• (before in Kernel/LHCbInterfaces)

Tools:
– Bintegrator, TrackPtKick,TrackReconstructible,TrackAcceptance, TrackSelector

TrackFitter
KalmanFilter Tool (A tool to fit/filter a Track or a State)

– Two external tools set by options:  ITrackExtrapolator, ITrackProjector
– Fit(Track,State seed): 

• fitTrack using a seed state (filter only, filter+smoother)
– Filter(State,Measurement)

• update the state, using the measurement



The packages IIIThe packages III
Tr/

TrackPython:
Expose to Python the Tools Interfaces

– ITrackExtrapolator (soon: ITrackProjector, ITrackKalmanFilter)
– In future (ITrackSimulator, IMeasurementProvider) TrackProjectors

Python scripts:
– translate_tracking.py

• automatic translation of code to the ´new´tracking event model 

Trg/
TrgConverters:

TrgTrackToTrack, TrackToTrgTrack
– Conversion: TrgTrack <-> Track

TriggerVelo,TriggerVeloTT, TriggerForward
TriggerVelo Private version to re-adapt to the last vertion of Track

– Re-adapt the Trg reconstruction packages of DC04 (DV12 series) for the new Track
– Compare the Trg (DC04) tracking with the new patter recognition tracking code.
– Backwards compatibility:

• with minor modifications (TrackEvent, TrackFitEvent?) we can run in DC04 data.

Vis/
SoEvent

SoTrackCnv.cpp
– Drawing the tracks in Panoramix

• Improvements to draw: Measurements, States and maybe Nodes



Interactive reconstructionInteractive reconstruction
Interactive reconstruction?: Via Python

Already there:
GaudiPython and ‘Bender’

– Expose the Gaudi framework to Python: >> gaudi.run(1)
– Expose most of DaVinci tools and LoKi ‘metalenguage’: ‘Bender’

Interaction with Panoramix and the event display (T.Ruf)
In: Tr/TrackPython package
Beneficts:

Interactive:
– Debuging and testing the reconstruction

• Event by event, track by track

Developing:
– Simple for newcomers to start

• A toolkit
– Fast developing: 4 times faster than in C++
– Easy prototyping: later you code in C++ with clear ideas
– In fact, it run fast as it uses underneath the C++ code



Interactive and with displayInteractive and with display
Python:

Just import modules 

pol = extrapolator(“TrackParabolicExtrapolator”)

state = track.physicsState().clone()

z = 3000.

pol.propagate(state,z)

print state.y()

Preliminary: Tracks in Panoramix A scatter plot from a Python prompt



Some ideas:Some ideas: TrackSimulatorTrackSimulator
Tr/

TrackSimulator 
Simulator Tool: TrackSimulator

– Main method: Simulate(Track&, const State& seed)
• It will fill the Track with a collection of simulated measurements

– Idea: simulate a Track with Measurement starting from a seed-State
• Straight forward reuse of the Tracking Tools

– To de:
• Check that the KalmanFilter is correctely implemented
• To check if the Extrapolator follows realistically the MCParticles
• To do alignment studies

– Setup of the Tool
• A list of planes, or labels locations, or ‘z’ positions with the type of 

Measurements
• A Master TrackProjector and an TrackExtrapolator. 

Do we want?: 

Measurement->Cluster->Digit->buffer bank



Some ideas: toolkit reconstructionSome ideas: toolkit reconstruction
The toolkit elements:

Can you do the PR and fitting with this elements?

A missing piece: MeasurementProvider (Tool):
A smart storage and fast provider of Measurements

– Methods (design ideas…) , return a ordered list of measurements
• orderByResidual(x,tolerance), 
• orderBySigma(x,sigmas), where x: 3D point

Using internal holders of Measurements (in tree hierarchy)
– A holder class that could (design ideas…)

• Methods: plane(), isInside(x) -a box-, id(),etc..

An aprox.. Example
From a state-seed extrapolate ‘TT’ planes
Get the measurements in order of sigmas around the extrapolated points
Make segments with them and fit them, select them according with a chi2 criteria

– We have a collection of possible pt values associated to the seed,

Track

State

Measurement

ITrackExtrapolator

ITrackProjector

ITrackKalmanFilter

IMeasurementProvider

In Python or C++



Status and plansStatus and plans
Step I:

Task Force has defined: Track and State
They are usable Track and States for:

– Pattern Recognition, Fitting, Trigger and Offline
Implementation revisited 13/05/05

To be ready with the current status of packages: 27/05/05
Step II

Task Force has defined preliminary versions: Measurement, Node, Projector
To use and see how they work

Plans:
Pattern Recognitions packages: 

Should fill the list of LHCbID of the Track
Fitting

Some recoding of the fitting, most already done.
Testing of the Extrapolators, Projectors and KalmanFilter

– Delicate work…
An eye in the alignment…

Visualization and Interactivity
MC link

General use of LHCbIDs, link with the MC via LHCbIDs 
Many front, small forces


