
Tracking Event Model, StatusTracking Event Model, Status

1. The plan, and the classes (again)

2. The packages modified or to be modified

3. Interactive reconstruction

4. Some ideas

5. Conclusion and plans

Status of the implementation ofStatus of the implementation of
the Track Event Modelthe Track Event Model

Jose A. Hernando, E. RodriguesJose A. Hernando, E. Rodrigues

PlanPlan
Motivation:

Revisit the tracking code to try to improve the design
Unify code on/off line and define an interface for the clients

Define a Track! (for on/off line)
Define data and tools base classes for and tracking developers and clients

Method:
Modify the current code adiabatically
Reusing almost all the code: “adapting” and not “writing new code”

Organization:
Task Force (G. Raven) to:

‘define the classes, requirements and implementation constrains’
Plan:

Step I: Interfaces for clients
Track, State, ITrackExtrapolator

Step II: Tracking interfaces
Measurement, Node, ITrackProjector, ITrackKalmanFilter

Scale:
6 months

Step I: Track, State, (the most regarded classesStep I: Track, State, (the most regarded classes……))

Track

A TRACK:

bitfield-flag: type, history, historyfit, status and
flags

chi2/ndof, ndof: quality of the fit

<State*> :“transient” states and physic state

<Measurement*> :

<Node*> : (aggregate state-measurement =>
residual)

<LHCbID>: link MC, Clusters (measurements)

Methods:

Access to physic state: p,pt, slopes, position

Access states: at z, plane, LOCATION

Persistency:

bitfield-flag, quality, physic state and LHCbIDs

the rest on demand!

State

A STATE:

bitfield-flag: type, location

state-vector, covariance, z

Methods:

Access to physics contents: pt(),p()

ITrackExtrapolator
A Extrapolator: extrapolate a Track/State

Main method: propagate(state, z)

Methods:

propagate track, state to z

in the way: propagate to plane, line, point

physics access: p,pt…

Step II: Measurement, Node, Projector (the poor brothersStep II: Measurement, Node, Projector (the poor brothers……))

Measurement
A Measurement:

bitfield-flag: type (ie RVelo)

measure, error (double)

“z” and LHCbID

ITrackProjector
A Projector: Project a state into a measurement

Main method: project(State, Measurement)

Internally deals with the Alignment/Calibration

(I think) it accept the two approaches:

I) global-local-global; II) global

Methods:

residual, chi2, node, ProjectionMatrix (H)Node

A Node:

type (I.e RVelo)

Measurement* (“refined”)

State*

residual, error

Methods:

chi2(), …

Internal?…

Play and we will see…

IKalmanFilter
A KalmanFilter (interface)

methods:

fit(Track,State seed);

filter(Track,State seed);

filter(State, Measurement)

The packages (quick look)The packages (quick look)……

C: compiles (Track version 13/5/5)

T: preliminary tested,

P: exposed to Python

W: work on progress

…: next…

TrackEvent

Event/

CPT TrConverters

Tr/

CT

TrackExtrapolators CPT

TrackFitEvent CP

TrackProjectors C

TrackTools W

TrackFitter CW

TrackIdealPR CT

TrackPython CPT

TrackSimulator …

TrgConverters

Trg/

CT

TriggerVelo W…

TriggerForward …

TriggerVeloTT …

SoEvent

Vis/

CW

The packagesThe packages……
Event/

TrackEvent:
Track, State, Measurement, Node
TrackKeys, StateKeys

– enums for the flags…

Tr/
TrConverters

TrFitTrack2TrackConv, Track2TrFitTrackConv
– Algorithms to convert: TrFitTrack <-> Track

TrackExtrapolators
Track<T>Extrapolator:

– T: Linear, Parabolic, FastParabolic, Herab, (FirstClever-> Master)
TrackFitEvent

<T>Measurement, FitNode, MeasurementProvider
– T: OT,VeloPhi,VeloR,IT

• the
– FitNode: Node for the Kalman Filter
– MeasurementProvider:

• returns a Measurement from a LHCbID
• to be move to Tr/TrackTools

The packages IIThe packages II
Tr/

TrackIdealPR:
TrueTrackCreators

– Algorithm: From MCParticles to Clusters to LHCbID to Measurements
TrackProjectors

<T>Projector
– VeloR,VeloPhi,IT,OT and Master

• Reusing the code from MeasurmentOnTrack
– The master projector projects any measurement

• it dispacthes the projection to the specific projector, project(State,Measurement)

TrackTools
Interfaces:

– ITrackExtrapolator,ITrackProjector, ITrackKalmanFilter
• (before in Kernel/LHCbInterfaces)

Tools:
– Bintegrator, TrackPtKick,TrackReconstructible,TrackAcceptance, TrackSelector

TrackFitter
KalmanFilter Tool (A tool to fit/filter a Track or a State)

– Two external tools set by options: ITrackExtrapolator, ITrackProjector
– Fit(Track,State seed):

• fitTrack using a seed state (filter only, filter+smoother)
– Filter(State,Measurement)

• update the state, using the measurement

The packages IIIThe packages III
Tr/

TrackPython:
Expose to Python the Tools Interfaces

– ITrackExtrapolator (soon: ITrackProjector, ITrackKalmanFilter)
– In future (ITrackSimulator, IMeasurementProvider) TrackProjectors

Python scripts:
– translate_tracking.py

• automatic translation of code to the ´new´tracking event model

Trg/
TrgConverters:

TrgTrackToTrack, TrackToTrgTrack
– Conversion: TrgTrack <-> Track

TriggerVelo,TriggerVeloTT, TriggerForward
TriggerVelo Private version to re-adapt to the last vertion of Track

– Re-adapt the Trg reconstruction packages of DC04 (DV12 series) for the new Track
– Compare the Trg (DC04) tracking with the new patter recognition tracking code.
– Backwards compatibility:

• with minor modifications (TrackEvent, TrackFitEvent?) we can run in DC04 data.

Vis/
SoEvent

SoTrackCnv.cpp
– Drawing the tracks in Panoramix

• Improvements to draw: Measurements, States and maybe Nodes

Interactive reconstructionInteractive reconstruction
Interactive reconstruction?: Via Python

Already there:
GaudiPython and ‘Bender’

– Expose the Gaudi framework to Python: >> gaudi.run(1)
– Expose most of DaVinci tools and LoKi ‘metalenguage’: ‘Bender’

Interaction with Panoramix and the event display (T.Ruf)
In: Tr/TrackPython package
Beneficts:

Interactive:
– Debuging and testing the reconstruction

• Event by event, track by track

Developing:
– Simple for newcomers to start

• A toolkit
– Fast developing: 4 times faster than in C++
– Easy prototyping: later you code in C++ with clear ideas
– In fact, it run fast as it uses underneath the C++ code

Interactive and with displayInteractive and with display
Python:

Just import modules

pol = extrapolator(“TrackParabolicExtrapolator”)

state = track.physicsState().clone()

z = 3000.

pol.propagate(state,z)

print state.y()

Preliminary: Tracks in Panoramix A scatter plot from a Python prompt

Some ideas:Some ideas: TrackSimulatorTrackSimulator
Tr/

TrackSimulator
Simulator Tool: TrackSimulator

– Main method: Simulate(Track&, const State& seed)
• It will fill the Track with a collection of simulated measurements

– Idea: simulate a Track with Measurement starting from a seed-State
• Straight forward reuse of the Tracking Tools

– To de:
• Check that the KalmanFilter is correctely implemented
• To check if the Extrapolator follows realistically the MCParticles
• To do alignment studies

– Setup of the Tool
• A list of planes, or labels locations, or ‘z’ positions with the type of

Measurements
• A Master TrackProjector and an TrackExtrapolator.

Do we want?:

Measurement->Cluster->Digit->buffer bank

Some ideas: toolkit reconstructionSome ideas: toolkit reconstruction
The toolkit elements:

Can you do the PR and fitting with this elements?

A missing piece: MeasurementProvider (Tool):
A smart storage and fast provider of Measurements

– Methods (design ideas…) , return a ordered list of measurements
• orderByResidual(x,tolerance),
• orderBySigma(x,sigmas), where x: 3D point

Using internal holders of Measurements (in tree hierarchy)
– A holder class that could (design ideas…)

• Methods: plane(), isInside(x) -a box-, id(),etc..

An aprox.. Example
From a state-seed extrapolate ‘TT’ planes
Get the measurements in order of sigmas around the extrapolated points
Make segments with them and fit them, select them according with a chi2 criteria

– We have a collection of possible pt values associated to the seed,

Track

State

Measurement

ITrackExtrapolator

ITrackProjector

ITrackKalmanFilter

IMeasurementProvider

In Python or C++

Status and plansStatus and plans
Step I:

Task Force has defined: Track and State
They are usable Track and States for:

– Pattern Recognition, Fitting, Trigger and Offline
Implementation revisited 13/05/05

To be ready with the current status of packages: 27/05/05
Step II

Task Force has defined preliminary versions: Measurement, Node, Projector
To use and see how they work

Plans:
Pattern Recognitions packages:

Should fill the list of LHCbID of the Track
Fitting

Some recoding of the fitting, most already done.
Testing of the Extrapolators, Projectors and KalmanFilter

– Delicate work…
An eye in the alignment…

Visualization and Interactivity
MC link

General use of LHCbIDs, link with the MC via LHCbIDs
Many front, small forces

