Tracking Event Model, Status

Status of the implementation of
the Track Event Model

Jose A. Hernando, E. Rodrigues

A

The plan, and the classes (again)

The packages modified or to be modified
Interactive reconstruction

Some ideas

Conclusion and plans

Plan

Motivation:
= Revisit the tracking code to try to improve the design
» Unify code on/off line and define an interface for the clients
Define a Track! (for on/off line)
= Define data and tools base classes for and tracking developers and clients
Method:
» Modify the current code adiabatically
= Reusing almost all the code: “adapting” and not “writing new code”
Organization:
= Task Force (G. Raven) to:
‘define the classes, requirements and implementation constrains’
Plan:
= Step I: Interfaces for clients
Track, State, ITrackExtrapolator
= Step II: Tracking interfaces
Measurement, Node, [TrackProjector, ITrackKalmanFilter
Scale:
= 6 months

Step I: Track, State, (the most regarded classes...)

A TRACK:

A STATE:

bitfield-flag: type, history, historyfit, status and

bitfield-flag: type, location
flags

state-vector, covariance, z
chi2/ndof, ndof: quality of the fit

. . Methods:
<State*> :“transient” states and physic state

Access to physics contents: pt(),p()

<Measurement*> :

<Node*> : (aggregate state-measurement =>

residual
) ITrackExtrapolator J
<LHCDbID=>: link MC, Clusters (measurements) -
A Extrapolator: extrapolate a Track/State
Methods:

Main method: propagate(state, z)
Methods:

Access to physic state: p,pt, slopes, position

Access states: at z, plane, LOCATION

propagate track, state to z
Persistency:
in the way: propagate to plane, line, point
bitfield-flag, quality, physic state and LHCbIDs

physics access: p,pt...

the rest on demand!

Step II: Measurement, Node, Projector (the poor brothers...)

A Measurement:
bitfield-flag: type (ie RVelo)
measure, error (double)

“z” and LHCbID

A Node:

[Internal?...]
type (I.e RVelo)

Measurement* (“refined”)
State*
residual, error
Methods:
chi2(), ...

—
ﬁackProjector

A Projector: Project a state into a measurement

Main method: project(State, Measurement)
Internally deals with the Alignment/Calibration
(I think) it accept the twa approaches:
1) global-local-global; H) global
Methods:

residual, chi2, node, ProjectionMatrix (H)

IKalmanFilter

A KalmanFilter (interface)
methods:
fit(Track,State seed);
filter(Track,State seed);

filter(State, Measurement)

The packages (quick look)...

Event/
TrackEvent CPT
Trg/
TrgConverters @
TriggerVelo m
TriggerVeloTT m
TriggerForward [_]
Vis/
SoEvent @]

\...: next.

/C: compiles (Track version 13/5/5)\
T: preliminary tested,
P: exposed to Python

W: work on progress

Tr/
TrConverters [ﬂ]
TrackldealPR @
TrackExtrapolators CPT
TrackFitEvent @
TrackProjectors @
TrackTools [W]
TrackFitter | CW
TrackPython \ CPT
TrackSimulator :j

The packages...

Event/
= TrackEvent:
Track, State, Measurement, Node
TrackKeys, StateKeys

— enums for the flags...

Tr/

= TrConverters
TrFitTrack2TrackConv, Track2TrFitTrackConv

— Algorithms to convert: TrFitTrack <-> Track
= TrackExtrapolators

Track<T>Extrapolator:
— T: Linear, Parabolic, FastParabolic, Herab, (FirstClever-> Master)

» TrackFitEvent

<T>Measurement, FitNode, MeasurementProvider
— T: OT,VeloPh1,VeloR,IT

— FitNode: Node for the Kalman Filter
— MeasurementProvider:

The packages ||

Tr/
» TrackldealPR:

o TrueTrackCreators
— Algorithm: From MCParticles to Clusters to LHEbID to Measurements

= TrackProjectors

o <T>Projector
— VeloR,VeloPhi IT,OT and Master

* Reusing the code from MeasurmentOnTrack

— The master projector projects any measurement
» it dispacthes the projection to the specific projector, project(State,Measurement)

» TrackTools

o Interfaces:
— ITrackExtrapolator,ITrackProjector, [TrackKalmanFilter
* (before in Kernel/LHCbInterfaces)
o Tools:
— Bintegrator, TrackPtKick, TrackReconstructible, TrackAcceptance, TrackSelector

» TrackFitter

o KalmanFilter Tool (A tool to fit/filter a Track or a State)
— Two external tools set by options: ITrackExtrapolator, ITrackProjector
— Fit(Track,State seed):
+ fitTrack using a seed state (filter only, filter+smoother)
— Filter(State,Measurement)
* update the state, using the measurement

The packages Il

Tr/
» TrackPython:

» Expose to Python the Tools Interfaces
— ITrackExtrapolator (soon: ITrackProjector, ITrackKalmanFilter)
— In future (ITrackSimulator, IMeasurementProvider) TrackProjectors
o Python scripts:
— translate tracking.py
* automatic translation of code to the 'new tracking event model

Trg/
= TrgConverters:
o TrgTrackToTrack, TrackToTrgTrack
— Conversion: TrgTrack <-> Track
v TriggerVelo, TriggerVeloTT, TriggerForward
» TriggerVelo Private version to re-adapt to the last vertion of Track
— Re-adapt the Trg reconstruction packages of DC04 (DV12 series) for the new Track
— Compare the Trg (DC04) tracking with the new patter recognition tracking code.
— Backwards compatibility:
* with minor modifications (TrackEvent, TrackFitEvent?) we can run in DCO04 data.
Vis/
= SoEvent
o SoTrackCnv.cpp

— Drawing the tracks in Panoramix
» Improvements to draw: Measurements, States and maybe Nodes

Interactive reconstruction

Interactive reconstruction?: Via Python

= Already there:
o GaudiPython and ‘Bender’
— Expose the Gaudi framework to Python: >> gaudi.run(1)
— Expose most of DaVinci tools and LoKi1 ‘metalenguage’: ‘Bender’

o Interaction with Panoramix and the event display (T.Ruf)
= In: Tr/TrackPython package
= Beneficts:

o Interactive:
— Debuging and testing the reconstruction
Event by event, track by track
» Developing:
— Simple for newcomers to start
A toolkit
— Fast developing: 4 times faster than in C++
— Easy prototyping: later you code in C++ with clear ideas
— In fact, it run fast as it uses underneath the C++ code

Interactive and with display

Python:

= Just import modules

pol = extrapolator(‘“TrackParabolicExtrapolator’)
state = track.physicsState().clone()
z =3000.

pol.propagate(state,z)

print state.y()

7

T
o
600 ++++ |
s
wr T T]
+++++ +}fl+*++i¢+++++++
el +F Lttt A 1

0k

I HHHHHHHH AR

=200

400 -

+Jr++_|_
ke
R
++++++++++++
-
e
e
+

I 1 I 1 I L I
] 500 1000 L500 2000 2500 3000 3500 4000 4500

5000

Some ideas: TrackSimulator

Tr/

= TrackSimulator

o Simulator Tool: TrackSimulator

— Main method: Simulate(Track&, const State& seed)

o It will fill the Track with a collection of simulated measurements

— Idea: simulate a Track with Measurement starting fromha seed-State

» Straight forward reuse of the Tracking Tools

— To de:

* Check that the KalmanFilter is correctely implemented
» To check if the Extrapolator follows realistically the MCParticles

* To do alignment studies

— Setup of the Tool

» A list of planes, or labels locations, or ‘z’ positions with the type of
Measurements

*— A Master IrackProjectpr and an TrackExtrapolator.

L

Do we want?:

Measurement->Cluster->Digit->buffer bank

Some ideas: toolkit reconstruction

The toolkit elements:

Can you do the PR and fitting with this elements?

Track

e

State ITrackProjector ’

Teasurement ITrackKalmanFilt#r

A missing piece: MeasurementProvider (Tool):

A smart storage and fast provider of Measurements
— Methods (design ideas...) , return a ordered list of measurements

Using internal holders of Measurements (in tree hierarchy)
— A holder class that could (design ideas...)

An aprox.. Example
From a state-seed extrapolate ‘TT’ planes

TrackExtrapolator IMeasurementProvider

In Python or C++

Get the measurements in order of sigmas around the extrapolated points

Make segments with them and fit them, select them according with a chi2 criteria

— We have a collection of possible pt values associated to the seed,

Status and plans

Step I:
= Task Force has defined: Track and State

They are usable Track and States for:
— Pattern Recognition, Fitting, Trigger and Offline
= Implementation revisited 13/05/05
To be ready with the current status of packages: 27/05/05

Step 11

= Task Force has defined preliminary versions: Measurement, Node, Projector
To use and see how they work

Plans:
= Pattern Recognitions packages:
Should fill the list of LHCbID of the Track
= Fitting
Some recoding of the fitting, most already done.

Testing of the Extrapolators, Projectors and KalmanFilter
— Delicate work...

An eye in the alignment. ..
= Visualization and Interactivity
= MC link
General use of LHCbIDs, link with the MC via LHCbIDs

Many front, small forces

