Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
					-

$B \rightarrow hh$ misalignment studies

Marco Gersabeck¹, Jacopo Nardulli², Eduardo Rodrigues¹

¹University of Glasgow, ²RAL

CP WG Meeting, CERN, 15 April 2008

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion 00
Outline					

- Motivation and Overview
- VELO & IT/OT Misalignments
- VELO z-scale Misalignments
- Fast Geometry
- Misalignments and B2hhFit
- Plans and Conclusions

CP WG Meeting, 15.04.08

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
00	0000000	0000	000	000000	00

- **VELO & IT/OT Misalignments**
- VELO z-scale Misalignments
- **Fast Geometry**
- Misalignments and B2hhFit
- Plans and Conclusions

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion
Motivati	on				

- Study effects of a misaligned tracking system on measurements with $B \rightarrow hh$.
- Chapter 1 (presented here)
 - Systematically study effect of misalignments purely based on their size.
 - Does not involve any assumptions on quality of metrology or alignment software.
 - Gives a good overview and shows critical alignment DOFs.
- Chapter 2 (future studies)
 - Study remaining misalignment effects after application of alignment algorithms.
 - Use alignment challenge data.
 - Detect potential bias coming from alignment software.

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion 00
Chapter	1				

- Create random misalignments for VELO sensors/modules and IT/OT layers.
- Choose scale (Gaussian sigma) to be ≈ 0.3 of the detector's single hit resolution. (called 1σ)
- Generate 10 sets of '1 σ ' misalignments and apply each to $2k B_d \rightarrow \pi\pi$ events¹.

 \Rightarrow This gives a 20*k* sample suppressing potentially 'friendly' or 'catastrophic' misalignment sets.

 Create other sets with misalignment scales increased by factors 3 (3σ) and 5 (5σ).

¹Misalignment are applied at reconstruction level (Brunel v32r2) to every generated with perfect geometry.

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
00	000000	0000	000	000000	00

VELO & IT/OT Misalignments

VELO z-scale Misalignments

Fast Geometry

Misalignments and B2hhFit

Plans and Conclusions

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T ●000000	VELO <i>z</i> -scale 0000	Fast Geometry	B2hhFit 000000	Conclusion

Misalignment scales

Scales shown here are for the 1σ set (in μ m and mrad).

	translations			rotations		
	Δ_{x}	Δ_y	Δ_z	Δ_{lpha}	Δ_eta	Δ_γ
VELO sensor	3	3	10	1.00	1.00	0.20
VELO module	3	3	10	1.00	1.00	0.20
IT layer	15	15	50	0.10	0.10	0.10
OT layer	50	0	100	0.05	0.05	0.05

University of Glasgow

Marco Gersabeck

CP WG Meeting, 15.04.08

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
00 0	000000	0000	000	000000	00

T station misalignment and pattern recognition

 Pattern recognition efficiencies with T station misalignments (IT/OT layers) only.

	$\epsilon_{\it form}$	/ard	ϵ_{ma}	tch
Brunel	v31r11	v32r2	v31r11	v32r2
0 σ	0.86	0.86	0.81	0.81
1σ	0.15	0.86	0.81	0.81
3σ	0.15	0.86	0.80	0.80
5σ	0.15	0.85	0.77	0.77

- Problems in forward PR reported previously were genuine and due to '0 misalignment tolerance' of the PR.
- With new tracking framework (Tf, used in Brunel v32) numbers become much nicer!
- Thanks to Stephanie Hansmann-Menzemer for her support! University of Glasgow

Introduction	VELO & T 00●0000	VELO z-scale	Fast Geometry	B2hhFit 000000	Conclusion

Overview of misalignment effects

 Effects on resolutions from both VELO & IT/OT misalignments.

Resolution	Affected by	Affected by
	VELO misalignments	T misalignments
π momentum	NO	YES
B mass	NO	YES
B vertex	YES	NO
B IP	YES	NO
Β c τ	YES	NO

NO = very small/ negligible effects YES = significant effects

Introduction	VELO & T 000●000	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion	
Resolutions in numbers						

- Resolutions as affected by VELO & IT/OT misalignments
- Resolutions are always measured as sigma of a single-Gaussian fit

$\pi \sigma(p)/p$	B mass	Primary	В	Β <i>c</i> τ
(%)	(MeV)	z-vertex (μ m)	z-vertex (μ m)	(fs)
0.495	22.5	41	147	37.7
0.504	22.3	48	159	40.9
0.560	25.1	84	214	58.0
0.630	25.5	153	260	78.6
	,	<u>`</u>		,
T domi	nated	VEL	_O dominated	
				University of Glasgow
	π σ(p)/p (%) 0.495 0.504 0.560 0.630 T domin	$ \begin{array}{c ccc} \pi \ \sigma(p)/p & {\rm B} \ {\rm mass} \\ (\%) & ({\rm MeV}) \\ \hline 0.495 & 22.5 \\ 0.504 & 22.3 \\ 0.560 & 25.1 \\ 0.630 & 25.5 \\ \hline \\ \hline \\ T \ {\rm dominated} \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Introduction	VELO & T 0000●00	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion
-					

On resolutions

- Misalignments can
 - deteriorate resolution
 - \Rightarrow sigma of $X_{rec} X_{true}$ distribution
 - produce a bias \Rightarrow mean of $X_{rec} - X_{true}$ distribution
- ► For 10 different misalignment configurations, we measure sigma of X_{rec} - X_{true} distribution for all samples.

 \Rightarrow combine effects of worsened resolution and bias

- Therefore look at
 - average sigma
 - RMS of mean
- ... and calculate < sigma > /RMS(mean)
 - \Rightarrow should be large for negligible bias

Introduction	VELO & T 00000●0	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion
On rooc	Jutiona	п			

- On resolutions II
 - ... and calculate < sigma > /RMS(mean) for all measured resolutions

	min	max
	< sigma $>$ / RMS(mean)	< sigma $>$ /RMS(mean)
0 σ	14	36
1σ	6	19
3σ	5	18
5σ	3	15

- No large effect due to misalignment-induced bias.
- ► Also, < sigma > not accurate due to low statistics.

 \Rightarrow take measured values as conservative estimate that may be at most 10% too high.

Introduction	VELO & T 000000●	VELO <i>z-</i> scale ০০০০	Fast Geometry	B2hhFit 000000	Conclusion

Effect on selection

- Biggest effect comes from tight upper cut on B impact parameter significance (*IPS*(*B_d*) < 2.5).</p>
- Additional effect on lower IPS cut of daughters.

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
00	000000	0000	000	000000	00

VELO & IT/OT Misalignments

VELO z-scale Misalignments

Fast Geometry

Misalignments and B2hhFit

Plans and Conclusions

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T 0000000	VELO z-scale ●੦੦੦	Fast Geometry	B2hhFit 000000	Conclusion	
Innut misalianments						

- Use 1σ misalignment scales from VELO & T.
- Create 10 sets with random misalignments
- ► In addition, introduce *z*-scaling: $z_{module} \rightarrow z_{module} \times (1 + scale)$
- ► Study different samples with scale = $\frac{1}{3} \times 10^{-4}$, 10^{-4} , $\frac{1}{3} \times 10^{-3}$, 10^{-3}
- On the 1 m length of the VELO these scale mean additional
 33 μm, 100 μm, 333 μm, 1000 μm

00	0000000	0000	000	000000	00		
Description of the second second							

Resolutions in numbers

Resolutions as affected by VELO z-scale misalignments

z-scale	$\pi \sigma(\boldsymbol{p})/\boldsymbol{p}$	B mass	Primary	B z-vertex	B $c\tau$
	(%)	(MeV)	z-vertex (μ m)	(µm)	(fs)
1.00000	0.495	22.5	41	147	37.7
1.0000 <mark>3</mark>	0.502	22.7	55	162	42.3
1.000 <mark>10</mark>	0.495	22.7	57	158	42.1
1.000 <mark>33</mark>	0.501	22.5	60	163	42.8
1.00 <mark>100</mark>	0.511	23.2	83	199	49.7

Introduction	VELO & T 0000000	VELO z-scale ○o●o	Fast Geometry	B2hhFit 000000	Conclusion
Effect on	vertices	\$			

• Vertex resolution after standard $B \rightarrow hh$ selection.

	Primary	vertex	B vertex		
z-scale	resolution	bias	resolution	bias	
	(in μ m)	(in μ m)	(in μ m)	(in μ m)	
1.00000	41	2	147	13	
1.0000 <mark>3</mark>	55	-2	162	16	
1.000 <mark>10</mark>	57	2	158	18	
1.000 <mark>33</mark>	60	3	163	17	
1.00100	83	16	199	22	

Introduction	VELO & T 0000000	VELO <i>z</i> -scale ○○○●	Fast Geometry	B2hhFit 000000	Conclusion					
Effect o	Effect on proper time									

▶ Proper time resolution after standard $B \rightarrow hh$ selection.

University of Glasgow

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
00	000000	0000	000	000000	00

VELO & IT/OT Misalignments

VELO z-scale Misalignments

Fast Geometry

Misalignments and B2hhFit

Plans and Conclusions

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry ●○○	B2hhFit 000000	Conclusion
A fast te	et				

- Fast geometry uses greatly simplified description of material in LHCb
- Test performance (without misalignments) compared to detailed geometry
- \blacktriangleright \Rightarrow No obvious difference in pattern recognition observed
- \blacktriangleright \Rightarrow Physics parameters follow...

Introduction	VELO & T 0000000	VELO z-scale	Fast Geometry ○●○	B2hhFit 000000	Conclusion

Resolutions in numbers

Resolutions of standard reconstruction and 'fast geometry'

geometry	$\pi \sigma(\mathbf{p})/\mathbf{p}$	B mass	Primary	B z-vertex	B $c\tau$
	(%)	(MeV)	z-vertex (μ m)	(µm)	(fs)
standard	0.495	22.5	41	147	37.7
fast	0.502	22.9	41	145	37.7

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry ○○●	B2hhFit 000000	Conclusion
A close	r look				

- Due to simplifications, effects are expected as function of ϕ
- Check momentum resolution vs ϕ
- University of Glasgow No significant deviation from standard geometry observed

Marco Gersabeck

CP WG Meeting, 15.04.08

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion

VELO & IT/OT Misalignments

VELO z-scale Misalignments

Fast Geometry

Misalignments and B2hhFit

Plans and Conclusions

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T 0000000	VELO z-scale	Fast Geometry	B2hhFit ●00000	Conclusion
DJhhri	+				

- Use B2hhFit v5r6
- Run 200 toys with reduced statistics ($\approx 0.2 \text{ fb}^{-1}$)
- As full fit didn't work yet:
 - ▶ Run mass fit for *B*_d and *B*_s combined
 - Run simultaneous mass & time fit separately for B_d and B_s
- Vary input values for mass resolution and proper time resolution according to output of misalignment studies with VELO & T misaligned.

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry	B2hhFit o●oooo	Conclusion
Mass fit	only				

- Mass resolution:
 - 22.5 MeV (ideal, left)
 - 25.5 MeV (VELO & T '5σ' case)
 - 30.0 MeV (extreme, right)

 Slight deterioration on fit parameter precision and bias ⇒ overall stable fit

Marco Gersabeck

CP WG Meeting, 15.04.08

Combined mass & time fit

- Use VELO & T misalignment results for 0σ , 3σ , 5σ
- Do separate fits for B_d and B_s
- B_s seems to be more sensitive to misalignments
- affected variables are:
 - ▲Γ(B_s)
 - $\Im(\lambda_f(B_s))$
 - $\Re(\lambda_f(B_s))$
 - ► ω(**B**_s)
- First misalignment studies with a lifetime fit!

Combined mass & time fit - II

Towards a CP sensitivity

Marco Gersabeck

CP WG Meeting, 15.04.08

Introduction	VELO & T 0000000	VELO z-scale	Fast Geometry	B2hhFit oooo●o	Conclusion

Combined mass & time fit - III

- No significant impact of misalignments on CP asymmetries observed
- Impact of misalignments on CP asymmetry sensitivities (uncertainties):

- Effect on B_d hardly significant
- Large effects on B_s , particularly at 5σ
- \Rightarrow take these sensitivities and extract sensitivity on γ !

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
				000000	

Combined mass & time fit - IV

- Measuring γ
- Sensitivities scaled by 1/√10 as 0.2 fb⁻¹ numbers were too large
- ▶ Input: θ , θ' free; $d/d' = [0.8, 1.2]; \gamma = 65^{\circ}$
- Output: values quoted for 68% probability interval

Marco Gersabeck

CP WG Meeting, 15.04.08

Introduction	VELO & T	VELO z-scale	Fast Geometry	B2hhFit	Conclusion
00	0000000	0000	000	000000	00

- **VELO & IT/OT Misalignments**
- VELO z-scale Misalignments
- **Fast Geometry**
- Misalignments and B2hhFit
- Plans and Conclusions

CP WG Meeting, 15.04.08

Marco Gersabeck

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion ●○
Plans					

- Write a detailed note
 - \Rightarrow first draft already in internal circulation
- Use misaligned events as direct input for B2hhFit
 ⇒ enables also the use of z-scaling events directly
- Chapter 2:

Study the 're-aligned' case in the alignment challenge \Rightarrow getting closer...

Introduction	VELO & T 0000000	VELO z-scale 0000	Fast Geometry	B2hhFit 000000	Conclusion			
Conclusions								

- ▶ VELO misalignments strongly affect $B \rightarrow hh$ selection and proper time resolution
- VELO z-scaling should not be a problem
- T misalignments have moderate effect on momentum and mass resolution
- Fast geometry looks fine so far
- B2hhFit sensitive to large misalignments and small statistics
- If software alignment is of the order of our '1σ' case things look fine
- Looking forward to chapter 2!