

Experimental Particle Physics

Eduardo Rodrigues

Glasgow PPE Seminar, 2nd October 2008

Highlights from CKM 2008

WG I	Precise determination of V_{ud} and V_{us}		
WG II	Determination of V_{ub} , V_{cb} , V_{cs} through inclusive / exclusive semileptonic B and D decays		
WG III	Rare B, D and K decays		
WG IV	Lifetimes, mixing and the corresponding phases		
WG V	γ (ϕ_3) and related measurements		
WG VI	Angles from penguin dominated B _(s,d) decays		

\mathbf{V}_{ud} from :

- Nuclear beta decays
- □ Neutron beta decays

V_{us} from:

- □ Kaon decays
- **\Box** Hadronic τ decays

V_{ud} from nuclear β -decay (1/2)

$$ft = rac{K}{G_V^2 \langle au_+
angle^2}$$

f =statistical rate function $f(Z, Q_{ec})$

 $t=t_{1/2}/BR=~{
m partial}$ half life

 $\langle \tau_+ \rangle = \text{isospin ladder operator matrix element}$ = $\sqrt{2}$ for isospin T = 1 states

> Nucleus-independent component Nucleus-dependent component Nuclear-structure-dependent component

MASTER EQUATIONS

CVC:
$$\mathcal{F}t = ft(1 + \delta'_R)(1 - (\delta_C - \delta_{NS})) = \text{constant}$$

 $K = K = 2\pi^3 \hbar \ln^4$

$$V_{ud}^2 = rac{K}{2G_F^2 \overline{\mathcal{F}t}(1+\Delta_R)} \qquad rac{K}{(\hbar c)^6} = rac{2\pi^3 \hbar \ln 2}{(m_e c^2)^5}$$

where

 $rac{\Delta_R}{\delta_R'}$

 δ_{NS}

- ft = experimental nuclear ft values.
- $\overline{\mathcal{F}t}$ = average corrected ft values (13 cases).
- G_F = weak interaction coupling constant (from muon lifetime).
 - = calculated radiative correction.

 δ_C = calculated isospin symmetry breaking correction.

Glasgow PPE Seminar, 2 October 2008

V_{us} from semi-leptonic Kaon decays (1/3)

Talks by Flynn and Simula

Sciascia

The FlaviaNet Kaon working group

• The FlaviaNet Kaon WG (www.lnf.infn.it/wg/vus/). Recent kaon physics results come from many experimental (BNL-E865, ISTRA+, KLOE, KTeV, NA48) and theoretical (Lattice, χ_{PT} ,). The main purpose of this working group is to perform precision tests of the Standard Model and to determine with high accuracy fundamental couplings (such as V_{us}) using all existing (published and/or preliminary) data on kaon decays, taking correlations into account.

• WG note: *Precision tests of the Standard Model with leptonic and semileptonic kaon decays*, arXiv:0801.1817 [hep-ph] 11 Jan 2008.

V_{us} from semi-leptonic Kaon decays (3/3)

V_{us} from hadronic τ decays (1/2)

$$R_{\tau} = N_{C} S_{EW} \left(1 + \delta_{P} + \delta_{NP} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

$$\left|V_{us}\right|^{2} = rac{R_{\tau,S}^{00}}{rac{R_{\tau,V+A}^{00}}{\left|V_{ud}\right|^{2}} - \delta R_{\tau,\text{th}}^{00}}$$

The τ could give the most precise V_{us} determination

From present τ data one gets:

$$V_{us} = 0.2165 \pm 0.0026_{exp} \pm 0.0005_{th}$$

Accuracy similar already to K_{I3}:

 $|V_{us}| = 0.2233 \pm 0.0024$ $[f_{+}(0) = 0.97 \pm 0.01]$

Interesting challenge for the B Factories & BESIII

Eduardo Rodrigues

Glasgow PPE Semmar, 2 October 2008

V_{us} from hadronic τ decays (2/2)

Eduardo Rodrigues

D^o mixing and CP violation

Standard Model :

- **Estimate of y_D ~10⁻² but hadronic corrections tricky**
- **x**_D more problematic to calculate

New Physics :

- □ Many models can yield sizable x_D, but not all
- **Charm mixing data will provide contraints**

- □ It took ~30 years to find evidence for D⁰ mixing
- □ First evidence announced at Rencontres de Moriond in March 2007
- \Box ... and now the "no mixing" scenario is excluded at ~10 σ !
- **Results from several experiments**

Absolute values of x_D and y_D ~ 1% compatible with SM predictions

No evidence found up to now !

$$\begin{split} A_{CP}^{KK} &= (-0.43 \pm 0.30 \pm 0.11)\% \\ A_{CP}^{\pi\pi} &= (+0.43 \pm 0.52 \pm 0.12)\% \\ & \text{consistent with no CPV} \end{split}$$

- □ Many decay modes used in searches
- □ Most stringent constraints from decays to CP eigenstates (KK, $\pi\pi$) and with Dalitz analyses of 3-body charge-conjugate states ($\pi^+\pi^-\pi^0$)

 ${\bf B^0} \rightarrow {\bf K_s K_s K_s}$

Fujikawa

γ from tree-level decays

	1.Unitarity Angle Gamma	T.Gershon
	2. Gamma from charged B decays at Babar field	V.Tisserand
	3. Belle results for phi_3 measurements	A.Bondar
	4. Gamma from neutral B decays at Babar	V.Sordini
	5. Time-dependent CP asymmetry in B0->D*- π^+	M.Iwabuchi
	6. CLEO_c Impact on ADS Determination of gamma	J.Libby
	7. CLEO_c Impact on gamma from B->DK, D-> $K_S \pi \pi$	J.Rademacker
	8. Measuring weak phases using B->D*V modes	R.Sinha
	9. Test of flavor SU(3) symmetry and weak phase gamma from $B \rightarrow K_B$	p C-W.Chang
	10.Gamma from UTFIT	V.Sordini
	11.Gamma from CKM fitter	K.Trabelsi
	12. Time dependent measurements of gamma at LHCb	A.Carbone
	13.Gamma at LHCb with ADS/GLW strategies	A.Powell
	14.Gamma at LHCb:Dalitz fit and global precision	G.Wilkinson
	15.Prospects for gamma (phi_3) at the SuperKEKB	P.Krokovny
Eduardo F	16. Prospects for gamma at Super Flavor Factory	F.Martinez-Vidal

Focus on theoretically pristine measurement

Gershon

- B→DK with any D decay mode that is accessible to both D⁰ and D
 ⁰ is sensitive to γ
 - M.Gronau & D.Wyler, PLB 253, 483 (1991)
 - M.Gronau & D.London, PLB 265, 172 (1991)
 - D.Atwood, I.Dunietz and A.Soni, PRL 78, 3257 (1997); PRD 63, 036005 (2001)
- Different D decay modes in use
 - CP eigenstates (eg. K^+K^- , $K_s\pi^0$) "GLW"
 - Doubly-suppressed decays (eg. Kπ) "ADS"
 - Singly-suppressed decays (eg. KK^{*}) "GLS"
 - Three-body decays (eg. $K_{\pi}^{+}\pi^{-}$) "GGSZ / Dalitz"
 - Other possibilities exist ...

An example from BaBar ...

Eduardo Rodrigues

Ciuchini, Pierini, Silvestrini, 2006; Gronau, Pirjol, Soni, JZ, 2006, 2007

- relative phases of $B \to K^* \pi$ amplitudes from $B \to K \pi \pi$
- no penguins in: $3A_{3/2} = A(K^{*+}\pi^{-}) + \sqrt{2}A(K^{*0}\pi^{0})$
- in the limit of zero EWP

$$\gamma = \Phi_{3/2} \equiv -1/2 \times \arg\left(\bar{A}_{3/2}/A_{3/2}\right)$$

s with EWP
$$(C = -0.27 = 3(C_9 + C_{10})/(2\lambda^2(C_1 + C_2)))$$

$$\bar{\eta} = \tan \Phi_{3/2} \left[\bar{\rho} + C [1 - 2 \operatorname{Re}(r_{3/2})] + \mathcal{O}(r_{3/2}^2) \right]$$

- for $K\pi$: $r_{3/2} = 0$ in SU(3) limit
- r_{3/2} correction to this Neubert-Rosner shift
 - $r_{3/2} < 0.05$ using naive factorization
 - $r_{3/2} = 0.054 \pm 0.045 \pm 0.023$ using SU(3)

	Branching Fraction (10-6)		A _{CP} (%)	
Mode	Exp.	QCDF	Exp.	QCDF
Κ *0π+	10.0 ± 0.8	8.9 ± 1.6	-2 ± 7	0.16 ± 0.16
$K^{*+}\pi^{0}$	6.9 ± 2.3	5.3 ± 0.8	4 ± 29	-41 ± 7
<i>K</i> *+ <i>π</i> -	10.3 ± 1.1	9.1 ± 1.7	-25 ± 11	-48 ± 8
K ^{*0} π ⁰	2.4 ± 0.7	3.9 ± 0.8	-15 ±12	4.7 ± 1.1
$\rho^+ K^0$	8.0 ± ^{1.5}	10.3 ± 2.0	-12 ± 17	0.53 ± 0.21
ρ ⁰ Κ ⁺	3.8 ± 0.5	4.8 ± 0.9	42 ± ⁸ ₁₀	46 ± 6
ρ+ K -	$8.6 \pm \frac{0.9}{1.1}$	13.4 ± 2.3	15 ± 6	31.4 ± 4.6
$\rho^0 K^0$	$5.4 \pm 0.9_{1.0}$	7.5 ± 1.3	1 ± 20	-3.3 ± 1.3

Experimental numbers from HFAG Summer 2008, QCDF predictions from Chang et al., arXiv:0807.4295v3

- $B^0 \rightarrow K\pi\pi^0$ will be difficult \rightarrow use a different method
- One nominal year of LHCb data on $B^+ \rightarrow K\pi\pi$
 - 2 orders of magnitude more events than the B factories!

• the ability of measuring γ is related to it's own value and the ratio $\mathbf{r} = \mathbf{T} / \mathbf{P}$ in B0 $\rightarrow K^* \pi$

- 🕨 we can measure r
- conflicting theoretical predictions Beneke,Neubert Nucl. Phys B675, 333(2003) Buras et al, Phys. Rev.Lett 92 101804 (2004)

Monte Carlo test

- 100 samples of 100k B0 events
- no background nor acceptance included
- inputs inspired by BaBar
- ▶ input y = 69', r = 0.45
- extracts $\gamma = 69^{\circ} \pm 5^{\circ}$

Determination of sample composition provides

- 1. Observation of new Bhh mode: $Bs \rightarrow K\pi$
- 2. First observation of $\Lambda_b \rightarrow ph$ decays: $\Lambda_b \rightarrow p\pi$ and $\Lambda_b \rightarrow pK$
- 3. Unique sample of $B_s \rightarrow KK$
- 4. B-factories-like samples of $B_d \rightarrow \pi\pi$ and $B_d \rightarrow K\pi$

- 1. $BR(B_s \rightarrow K\pi)$ and $ACP(B_s \rightarrow k\pi)$
- 2. Improved BR($B_s \rightarrow KK$)
- 3. BR($\Lambda_b \rightarrow p\pi$) and ACP($\Lambda_b \rightarrow p\pi$)
- 4. BR($\Lambda_{b} \rightarrow pK$) and ACP($\Lambda_{b} \rightarrow pK$)

All BR are measured relative to the reference mode $B_{d} \rightarrow K\pi$ to cancel common systematic uncertainties

 $\begin{tabular}{ll} \hline b \end{tabular} \rightarrow s/d \end{tabular} & , inclusive and exclusive \\ \hline b \end{tabular} \rightarrow s \end{tabular}^+ \end{tabular} & , inclusive and exclusive \\ \hline b \end{tabular} \rightarrow \mu^+ \end{tabular} & , inclusive and exclusive \\ \hline h \end{tabular} & b \end{tabular} \rightarrow \mu^+ \end{tabular} & , inclusive and exclusive \\ \hline h \end{tabular} & b \end{tabular} \rightarrow \mu^+ \end{tabular} & b \end{tabular}$

Provides stringent bounds on many models of New Physics

First estimate at NNLO $\mathcal{B}(\bar{B} \to X_s \gamma)_{\rm NNLO}^{E_{\gamma} > 1.6 \, {\rm GeV}} = (3.15 \pm 0.23) \times 10^{-4}$ To be compared to $\mathcal{B}(\bar{B} \to X_s \gamma)_{\exp}^{E_{\gamma} > 1.6 \,\text{GeV}} = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4}$ Inclusion of NNLO corrections leads to a notable reduction of renormalization scale dependences. Most pronounced effect occurs for charm quark mass scale that was main source of uncertainty at

NLO.

"Matching" between experiment and theory at an energy cut-off of 1.6 GeV. But theorists recommend to use a cut-off at 1.8 GeV ...

Eduardo Rodrigues

Nishida

Ν	is	hi	d	а
	13		u	α

Charge asymmetry	Isospin asymmetry		
$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(B \to K^* \gamma)}$	$\Delta_{0, \cdot} = \frac{\Gamma(B^0 \to K^{*0} \gamma) - \Gamma(B^+ \to K^{*+} \gamma)}{\Gamma(B^+ \to K^{*+} \gamma)}$		
$\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)$	$\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)$		

BaBar -0.009 \pm 0.017 \pm 0.011 BELLE -0.015 \pm 0.044 \pm 0.012 BaBar $0.029 \pm 0.019 \pm 0.016 \pm 0.018$ BELLE $0.034 \pm 0.044 \pm 0.026 \pm 0.025$

This number becomes interesting in comparison with measurement in B → K^(*) I⁺I⁻

$b \rightarrow s/d \ l^+l^-$

A_{FB}:

- Calculations to fixed-order NNLO
- □ SM predictions with 5-15% errors

Rates and amplitudes:

- **Theoretically** safe region: $1 < q^2 < 6 \text{ GeV}^2$
- Experiments strongly encouraged to focus on this window (e.g. Babar goes down to 0.1 GeV²)

New observables :

- Good exp. resolution
- Small theor. uncertainties

$$A_T^{(1)} = \frac{-2\text{Re}(A_{\parallel}A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

$$A_T^{(2)} = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2}$$

 $A_T^{(3)} = \frac{|A_{0L}A_{\parallel L}^* - A_{0R}^*A_{\parallel R}|}{|A_{0L}|^2 |A_{\perp}|^2} \qquad \qquad A_T^{(4)} = \frac{|A_{0L}A_{\perp L}^* - A_{0R}^*A_{\perp R}|}{|A_{0L}^*A_{\parallel L} + A_{0R}A_{\parallel R}^*|}$

Old

Results are compatible with SM but are certainly interesting!

Great prospects for LHCb to resolve this.

Expect O(2k) events in 2009

Conclusions and Outlook

- Many many updates and new techniques presented
- Impressive achievements by BaBar, Belle and CDF
- Unitarity of 1st row of CKM matrix confirmed to 0.07%
- Particular focus on complementary measurements of γ
- Still only known to about 10-30 degrees
- LHCb is finally in the spotlight ;-)