

Prospects for $B \rightarrow hh$ at LHCb

Eduardo Rodrigues On behalf of the LHCb Collaboration

CKM2008 Workshop, Rome, 9-13 September 2008

LHCb

Eduardo H

Mission statement Forward spectrometer Acceptance: 1.8 < η < 4.9 - Search for new physics probing the flavour structure of the SM - Study CP violation and rare decays in the B-meson sector Luminosity: 2•10³² cm⁻² s⁻¹ **Nr of B's / 2fb⁻¹** (nominal year): 10¹² **Detector:** excellent tracking excellent PID B flight path of the order 5-10mm ECAL HCAL M4 M5 **Reconstruction:** SPD/PS M3 - muons: easy M2 RICH2 M1 Magnet - hadronic tracks: fine - electrons: OK RICH1 - π^0 's: OK, though difficult Vertex - neutrinos: no ocato D р Tracking: Expected tracking resolution δp/p=0.35% to 0.55% Calorimeter resolution: Vertexing: Design ECAL resolution Expected primary vertex resolution **RICH** performance: $\sigma(E)/E = 10\%\sqrt{E} + 1\%$ (*E* in GeV) ~10µm transverse plane and Cherenkov angle resolution 0.6-1.8 mrad HCAL resolution from test-beam data ~50µm in the longitudinal one Particle identification in p range 1-100 GeV $\sigma(E)/E = (69\pm5)\%\sqrt{E} + (9\pm2)\%$ (E in GeV) Expected Impact parameter π , K ID efficiency > 90%, misID<~10% resolution $\sigma_{IP}=14\mu m+35\mu m/p_T$

$B \rightarrow h^{+}h^{\prime -}$ decays – a rich physics program

 $\Box \ B^{0} \rightarrow \pi\pi: time-dependent asymmetry$

- so far inconsistency in direct CP contribution ($C_{\pi\pi}$) between BaBar and Belle

- □ $B^0 \rightarrow K^+\pi^-$: direct CP violation measurement
- \square B_s $\rightarrow \pi^+ K^-$: direct CP violation, branching ratio measurement
- Gronau, Lipkin and Rosner relation

$$\left|A\left(B_{s} \to \pi^{+}K^{-}\right)\right|^{2} - \left|A\left(\overline{B}_{s} \to \pi^{-}K^{+}\right)\right|^{2} = \left|A\left(\overline{B}^{0} \to \pi^{+}K^{-}\right)\right|^{2} - \left|A\left(B^{0} \to \pi^{-}K^{+}\right)\right|^{2}$$

- □ $B^0 \rightarrow K^+\pi^-$, $B^+ \rightarrow K^+\pi^0$: \neq in CP asymmetry hard to understand theoretically
- \square B⁰ $\rightarrow \pi\pi$, B_s \rightarrow KK : determination of the CP angle γ exploiting U-spin symmetry
- **Rare B** \rightarrow h⁺h^{'-} : h = π , K ... but also a h = baryon such as p, Λ

Etc. List non exhaustive

$B \to h^+ h^{\text{-}}$ decays in LHCb

LHCb has focussed so far on:

- determination of CP asymmetry observables
- determination of γ exploiting U-spin symmetry (R. Fleisher, Phys. Lett. B459 (1999) 306)

\Box B⁰ $\rightarrow \pi\pi$, B_s \rightarrow KK :

- □ γ from interference between tree-level (b→u) and penguin (b→d,s) diagrams
- □ Complex analysis involving a sophisticated fit of many B→hh decays in mass and propertime

□ Comparison with other determinations of γ using tree-level decays (such as $B^0 \rightarrow D_q u_q$) can evidence inconsistencies and hint at New Physics

Combined selection of $B \to h^+h^{\prime -}$ decays

Signal(s) selection:

- □ Standard selection based on transverse momentum, IP and displacement significances, vertex χ^2
- **Particle identification to distinguish between** \neq modes
- **Excellent B propertime resolution ~40 fs**
- **Tagging power** εD^2 : 4-5 / 7-9 for B⁰ / B_s

Backgrounds:

- □ Every charmless charged 2-body decay of B⁰, B_s or Λ_b is a potential background to another cousin B → h⁺h^{'-} mode
 - B.R.s differ by up to 1 order of magnitude
 - Suppressed with excellent PID
- b-bbar inclusive

Expected (untagged) yields and background-to-signal ratios for 2fb⁻¹:

		$B o \pi \pi$	$B \to K\pi$	$B_s \rightarrow KK$	$B_s \rightarrow \pi K$
	yields	36k	140k	36k	10k
Eduardo Rodrigues	B/S	0.5	0.15	< 0.06	1.9

Combined fit & sensitivity studies (1/3)

Inputs to toy MC study - extracted from full detector simulation :

- **B** invariant mass and propertime distributions for signal and background
- **B** invariant mass and propertime resolutions
- □ Flavour tagging performance
- **Propertime acceptance**

Setting in toy MC study – physics observables:

- **CP-violating observables measured by BaBar, Belle, CDF**
- □ Non-measured CP parameters estimated assuming U-spin symmetry

Toy MC :

- Generation of signals and backgrounds in mass and propertime taking into account the above ⇒ Likelihood fit
- **Extraction of \gamma using UTfit Bayesian approach**

□ Time-dependent asymmetries

$$A_{CP}(t) = \frac{A_{dir} \cos(\Delta mt) + A_{mix} \sin(\Delta mt)}{\cosh(\Delta \Gamma t / 2) - A_{\Delta \Gamma} \sinh(\Delta \Gamma t / 2)}$$

- Asymmetry observables depend in total on 7 parameters: γ, mixing phase β_d (β_s), penguin-to-tree amplitudes ratio P/T = d e^{iθ}
 - β_d , (β_s) from other measurements \Rightarrow 5 unknowns
- **U-spin symmetry assumptions** (neglecting annihilation and exchange diagrams) :
 - strong assumption: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$

 \Rightarrow solve 3 unknowns for γ using 4 (A_{dir/mix}) measurements

- weak assumptions : $d_{\pi\pi} = d_{KK}$ or $d_{\pi\pi} = d_{KK} \pm 20\%$, $\theta_{\pi\pi}$ and θ_{KK} independent \Rightarrow solve 4 unknowns for γ using 4 measurements
- But U-spin assumptions introduce uncertainties …

Combined fit & sensitivity studies (3/3)

Sensitivities for 2fb⁻¹

	$B o \pi \pi$	$B_s \rightarrow KK$
σ(A _{dir})	0.043	0.042
σ(A _{mix})	0.037	0.044

- Weak assumptions: $\sigma(\gamma) \sim 7-10$ degrees
- Strong assumption: $\sigma(\gamma) \sim 4$ degrees

□ <u>Under way</u>: fit study with introduction of PID PDFs, where PID info taken directly from data with a D* sample

0.002

0

50

100 150 γ[^ο]

Rare $B \rightarrow h^+h^{-}$ modes

- **Q** Rare modes such as $B^0 \rightarrow KK$ or $B_s \rightarrow \pi\pi$ not yet found
- **Early discovery potential for these rare modes under consideration** ...

Back-of-the-envelope calculation:

- □ Normalize to # of observed decays of similar (exclusive) B-decay
- Assuming equal efficiencies for trigger, selection, etc.:

$$\frac{N_{rec}(B_{d,s} \to hh)}{N_{rec}(B_{s} \to K^{+}K^{-})} = \frac{f(b \to B_{d,s})}{f(b \to B_{s})} \times \frac{BR(B_{d,s} \to hh)}{BR(B_{s} \to K^{+}K^{-})} \cong \frac{f(b \to B_{d,s})}{f(b \to B_{s})} \times \frac{BR(B_{d,s} \to hh)}{2 \cdot 10^{-5}}$$
$$\Rightarrow N_{rec}(B_{d,s} \to hh) \cong \frac{f(b \to B_{d,s})}{f(b \to B_{s})} \times 9 \cdot 10^{5} \times BR(B_{d,s} \to hh) \quad \text{in } 1 \text{ pb}^{-1}$$

Assuming the B. R.s to be 10^{-7} we should see these rare signals with a few 100 pb^{-1} ! (the reconstruction efficiencies will be lower than for standard B \rightarrow hh modes)

- We expect ~36k B \rightarrow KK triggered and untagged events per nominal year (LHCb-2007-059) \Rightarrow ~18 events in 1pb⁻¹

Charmless baryonic 2-body decays (1/2)

 $\Box \quad \text{What about } B \rightarrow \text{hh decays, where } h = p, \Lambda ?$

□ Many 3-body decays already discovered ...

... but no 2-body decay yet

Heavy Flavor Averaging Group April 2008

10/13

Compilation of B^0 Baryonic Branching Fractions All branching fractions are in units of 10^{-6} ; limits are 90% CL

In PDG2006 New since PDG2006 (preliminary) New since PDG2006 (published)

RPP#	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	New Avg
266	$p\overline{p}$	< 0.27	< 0.27	< 0.11	< 1.4	< 0.11
274	$\Lambda\overline{\Lambda}$	< 0.69		< 0.32	< 1.2	< 0.32
274		< 0.69 Compilation of I	B ⁺ Baryonic B	< 0.32 Branching Fra	< 1.2	< 0
	All	branching fraction	s are in units of	10^{-6} ; limits ar	e 90% CI	L
295	$p\overline{\Lambda}$	< 0.49		< 0.32	< 1.5	< 0.32

Theoretical calculations are challenging and uncertain

Gamma Several predictions in disagreement

	Ref. [3]	Ref. [7]	Ref. [10]	Ref. non-local	[11] local	- This work	Expt.
$\overline{B}{}^0 o p \bar{p}$	$4.2 imes 10^{-6}$	$1.2 imes 10^{-6}$	$7.0 imes10^{-6}$	$2.9 imes 10^{-6}$	$2.7 imes 10^{-5}$	$1.1 imes 10^{-7\dagger}$	$< 1.2 \times 10^{-6}$
$\overline{B}^0 \to \Lambda \bar{\Lambda}$			$2 imes 10^{-7}$			0^{\dagger}	$< 1.0 \times 10^{-6}$
$B^- \to \Lambda \bar{p}$		$\lesssim 3 imes 10^{-6}$				$2.2\times 10^{-7\dagger}$	$<2.2\times10^{-6}$

Cheng & Yang, arXiv:hep-ph/0112245v3

$B \rightarrow p \overline{p}$ decay:

- □ Simplest 2-body charmless baryonic B decay
- LHCb has potential for a first discovery with early data

$B \to p \bar{p} \mbox{ mode in LHCb}$

Note: distributions for events with both MC B-daughter protons in LHCb acceptance

- Back-of-the-envelope calculation
- Normalize to # of observed decays of similar (exclusive) B-decay
- □ Assuming equal efficiencies for trigger, selection, etc.:

$$\frac{N_{rec}(B^0 \to p\overline{p})}{N_{rec}(B_s \to K^+K^-)} = \frac{f(b \to B^0)}{f(b \to B_s)} \times \frac{BR(B^0 \to p\overline{p})}{BR(B_s \to K^+K^-)} \cong \frac{0.4}{0.1} \times \frac{BR(B^0 \to p\overline{p})}{2 \cdot 10^{-5}}$$

$$\Rightarrow N_{rec}(B^0 \to p\overline{p}) \cong 36 \cdot 10^5 \times BR(B^0 \to p\overline{p}) \text{ in } 1 \text{ pb}^{-1}$$

Assuming the branching ratio to be 10⁻⁷

- We expect ~36k B \rightarrow KK triggered and untagged events per nominal year (LHCb-2007-059) \Rightarrow ~18 events in 1pb⁻¹

Conclusions and Outlook

- LHCb provides unprecedented sensitivity to all $B \rightarrow hh\ modes$
- A large and rich program is being investigated
- sensitivity to $\gamma \sim 5^{\circ}$ with 10fb⁻¹ of data
- Other modes will be exploited to complement γ measurement
- Looking forward to seeing all these developments "in action" using LHC data ...!

Back-up slides

HFAG summaries (1/2)

Heavy Flavor Averaging Group April 2008

Compilation of B^0 Baryonic Branching Fractions All branching fractions are in units of 10^{-6} ; limits are 90% CL

In PDG2006 New since PDG2006 (preliminary) New since PDG2006 (published)

RPP#	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	New Avg.	
266	$p\overline{p}$	< 0.27	< 0.27	< 0.11 *	< 1.4	< 0.11	←───
268	$p\overline{p}K^{0}$	$2.1^{+0.6}_{-0.4}$	$3.0 \pm 0.5 \pm 0.3$ †	$2.51^{+0.35}_{-0.29} \pm 0.21 \ddagger$		$2.66\substack{+0.34\\-0.32}$	
269	$\Theta^+\overline{p}$ *	< 0.23	< 0.05	< 0.23		< 0.05	
-	$f_J(2221)K^0$ *	New	< 0.45			< 0.45	
270	$p\overline{p}K^{*0}$	< 7.6	$1.47 \pm 0.45 \pm 0.40$ †	$1.18^{+0.29}_{-0.25} \pm 0.11 \ddagger$		$1.24\substack{+0.28\\-0.25}$	Easy with
-	$f_J(2221)K^{*0}$ *	New	< 0.15			< 0.15	LHCb?
271	$p\overline{\Lambda}\pi^-$	2.6 ± 0.5	$3.30 \pm 0.53 \pm 0.31$	$3.23^{+0.33}_{-0.29} \pm 0.29$	< 13	$3.25\substack{+0.36\\-0.34}$	
	$p\overline{\Sigma}(1385)^-$	New		< 0.26		< 0.26	
-	$\Delta^0\overline{\Lambda}$	New		< 0.93		< 0.93	
272	$p\overline{\Lambda}K^-$	< 0.82		< 0.82		< 0.82	
273	$p\overline{\Sigma}^{0}\pi^{-}$	< 3.8		< 3.8		< 3.8	
274	$\Lambda\overline{\Lambda}$	< 0.69		< 0.32	< 1.2	< 0.32	

§Di-baryon mass is less than 2.85 GeV/ c^2 ; † Charmonium decays to $p\bar{p}$ have been statistically subtracted. ‡ The charmonium mass region has been vetoed. * Product BF - daughter BF taken to be 100%; $\Theta(1540)^+ \rightarrow pK^0$ (pentaquark candidate).

* Belle collab., hep-ex/0703048v1

HFAG summaries (2/2)

Heavy Flavor Averaging Group April 2008

Compilation of B^+ Baryonic Branching Fractions All branching fractions are in units of 10^{-6} ; limits are 90% CL

In PDG2006 New since PDG2006 (preliminary) New since PDG2006 (published)

$\mathrm{RPP}\#$	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	New Avg.
286	$p\overline{p}\pi^+$	$3.1^{+0.8}_{-0.7}$	$1.69 \pm 0.29 \pm 0.26 \dagger$	$1.68^{+0.26}_{-0.22} \pm 0.12$ ‡	< 160	$1.68\substack{+0.23\\-0.21}$
289	$p\overline{p}K^+$	5.6 ± 1.0	$6.7 \pm 0.5 \pm 0.4 ~\dagger$	$5.98^{+0.29}_{-0.27} \pm 0.39 \ddagger$		$6.24\substack{+0.39\\-0.38}$
290	$\Theta^{++}\overline{p}$ *	< 0.091	< 0.09	< 0.091		< 0.09
291	$f_J(2221)K^+ *$	< 0.41		< 0.41		< 0.41
292	$p\overline{\Lambda}(1520)$	< 1.5	< 1.5			< 1.5
294	$p\overline{p}K^{*+}$	$10.3\substack{+3.6+1.3\\-2.8-1.7}$	$5.3 \pm 1.5 \pm 1.3 ~\dagger$	$3.38^{+0.73}_{-0.60} \pm 0.39 \ddagger$		$3.64\substack{+0.79\\-0.70}$
	$f_J(2221)K^{*+*}$	New	< 0.77			< 0.77
295	$p\overline{\Lambda}$	< 0.49		< 0.32	< 1.5	< 0.32
	$p\overline{\Lambda}\pi^{0}$	New		$3.00^{+0.61}_{-0.53}\pm0.33$		$3.00\substack{+0.69\\-0.62}$
_	$p\overline{\Sigma}(1385)^0$	New		< 0.47		< 0.47
_	$\Delta^+\overline{\Lambda}$	New		< 0.82		< 0.82
299	$\Lambda\overline{\Lambda}\pi^+$	< 2.8		$< 2.8 \ddagger$		$< 2.8 \ddagger$
300	$\Lambda\overline{\Lambda}K^+$	$2.9^{+0.9}_{-0.7} \pm 0.4$		$2.9^{+0.9}_{-0.7} \pm 0.4 \ddagger$		$2.9^{+1.0}_{-0.8}$
301	$\overline{\Delta}^{0} p$	< 380		< 1.42	< 380	< 1.42
302	$\Delta^{++}\overline{p}$	< 150		< 0.14	< 150	< 0.14

§Di-baryon mass is less than 2.85 GeV/ $c^2;$ † Charmonium decays to $p\bar{p}$ have been statistically subtracted.

 \ddagger The charmonium mass region has been vetoed. * Product BF - daughter BF taken to be 100%:

 $\Theta(1540)^{++} \rightarrow K^+ p$ (pentaquark candidate);