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Abstract

This note introduces the concept of Trajectories. The LHCb trajec-

tory model and the implementation in the track fitting and tracking

sub-detector code as in Brunel v31r2 are described. The possible

use of trajectories for alignment is outlined.
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1 Introduction

In the past two years the whole of the tracking model and software have been reviewed.

Additional functionality has been included to accommodate the need for a realistic detector

geometry description. The LHCb tracking event model is described in detail elsewhere [1].

Here the focus lies on the track fitting and alignment part of the model, which has been

developed to deal naturally with realistic and non-ideal detector geometries.

2 Fitting with Trajectories

2.1 Decoupling Geometry from the Track Fit

Track fitting is connected to the detector geometry through the use of sub-detector hits

as input information. In LHCb, the tracking detectors are the Vertex Locator (VELO) [2],

the Trigger Tracker (TT) [3], and the inner (IT) [3] and outer (OT) [4] trackers.

The LHCb detector comprises a large number of components whose locations and sizes

are stored in a geometry XML database. For the tracking sub-detectors, the components

are by design flat-surfaced boxes. In light of the effort to move the (old) ideal detector

description to a both more realistic and align-able one, a number of changes and additions

have been made to the software. The information stored in the XML database can now be

updated such that the changes are automatically propagated to all affected data. Such an

update affects the track fit, since that needs to know the geometry of the tracking sub-

detector elements which recorded hits in order to determine the most accurate estimates

of the track parameters. It is desirable for the track fitting code to be robust against

changes in the XML database. Having to rewrite the fitting code whenever a new shape is

implemented would be impractical. This “robustness goal” has been achieved by adopting

and implementing the concept of trajectories from the BaBar experiment tracking software,

of which a general account can be found in [5].

Trajectories are objects which serve to decouple the track reconstruction code from the

specific implementation of the detector element’s geometry description. To this end, a

trajectory contains the geometrical information of the detector element, i.e. its location,

size and shape, and can be thought of as a curve in global coordinate space. From this

information the trajectory can deduce a parabolic expansion at any point along its length.

Since the format of this expansion is independent of the curve considered, it is used as

the input of geometry information to the track fit, thereby making the fit robust against

changes in the shape of detector elements.
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2.2 Trajectories in the Track Fit

The LHCb track fit (described in [6]) determines the best track parameters from a set

of measurements. It extrapolates the track from the state at the previous measurement to

the next measurement, which it needs to approach as closely as possible before projecting

the track state onto the measurement space and subsequently determining the residual.

Previously (see [7]), the track would be extrapolated until it reaches the z-position of the

ideal detector plane which recorded the hit. The coordinate along the length of the strip or

wire would be chosen such as to minimise the distance between the measurement and the

track state. Since this approach depends upon the detector plane to be flat and vertical,

this can not be used in a general and realistic scenario.

A measurement contains the precision coordinate value obtained from a hit, for instance

the R-coordinate in case of a VELO R sensor hit. It does not know accurately where along

the other two coordinates the particle traversed the detector element. Staying with the

VELO R-hit example, the track fit will have to determine where the track comes closest to

a curve shaped like a R strip, going through the centre of the charge deposition and being

in the plane of the R sensor. This is where the concept of trajectories comes into play:

the measurement contains a trajectory, obtained from the sub-detector code, corresponding

to the hit type, which contains the curve just described. Inside, the trajectory knows the

shape of this curve in global coordinates and it can provide a parabolic expansion to that

curve at any requested point along it.

As a first step, the present track fit extrapolates the track to the z-position associated

to the centre of the detector element. Given the installation precision of the tracking sub-

detectors, the state created at this z-position is arguably close to the actual hit. From

the track state and magnetic field vector ~B at this (conventional) z-position, a “state

trajectory” is made that parameterises the local shape of the track (see subsection 3.5).

The problem of determining the point where the track is closest to the measurement is

now reduced to calculating the closest approach between the curves contained within the

trajectory of the measurement and the trajectory of the track state. Since the trajectories

can provide parabolic expansions of these curves, a dedicated tool (see subsection 3.7)

requires but one method in order to determine both the two points on the curves where

they are closest to each other and the distance (vector) between those points.

The minimisation tool also knows how the distance vector changes as a function of

the state trajectory’s closest point position and the state trajectory knows how the closest

point moves along the curve as a function of the state parameters. The product of these

derivatives is the so-called projection matrix, which projects a state vector onto the mea-

surement space. The residual between this projection and the measurement value is then

determined.
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3 The LHCb Trajectory Model

The trajectory concept is translated into a C++ base class called Trajectory. It

declares the basic functionality as required to perform its designed task: a trajectory pa-

rameterises a curve in terms of an “arc length” along itself. The shape and position of an

object is used as input when constructing a trajectory, which in practice is always a curve

in space.

A number of trajectory classes derived from the Trajectory.h base class are available

and cover the present needs (see figure 1). The trajectory for a track state, StateTraj, re-

sides in the Tr/TrackFitEvent package [8] whereas the detector-related trajectory classes

LineTraj, CircleTraj and ParabolaTraj can be found in the Kernel/LHCbKernel

package [9]. All these concrete classes derive from Trajectory; except for StateTraj

which in addition derives a derivatives method from the DifTraj class 3.6, included in

Kernel/LHCbKernel.

Trajectory

DifTraj LineTraj CircleTraj ParabolaTraj

StateTraj

Figure 1: Trajectories inheritance diagram.

The next sub-sections are dedicated to the description of the trajectory model classes.

The TrajPoca minimisation tool, located in Kernel/LHCbAlgs [10], is also described

below. The corresponding tool interface, ITrajPoca, is included in Kernel/LHCbKernel.

3.1 Trajectory class

Trajectories are “associated” to objects – a track state or a sub-detector hit – and

constructed from the object’s shape and position.
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Any location along the trajectory’s curve can be referred to using the arclength

variable. The arclength is zero at a pre-defined point on the curve and can run in

both positive and negative directions. The range of valid arclength values is accessible

through std :: pair < double, double > range(). One can also obtain the minimum and

maximum validity values through the double beginRange() and double endRange()

methods. Any arclength value can be limited to this validity range using the double

restrictToRange(arclength) method. From the range the length of the curve can be

determined, which is available via the double length() method.

At any value of arclength the position, direction, and curvature vectors – XYZPoint

position(arclength), XYZVector direction(arclength) and XYZVector curvature

(arclength) – can be obtained, being them the zeroth-, first- and second-order derivatives

of the curve at the specified arclength value. This curve parameterisation reflects the

fact that all trajectories are locally described as parabolas. These local second-order expan-

sion parameters at a specific arclength value can be obtained through the method void

expansion(arclength, XYZPoint& position, XYZVector& direction, XYZVector&

curvature), where one provides references to the expansion parameters which will be as-

signed to.

In order to quantify the distance in arc length for which an expansion describes the curve

to within a user-defined tolerance, the double distTo1stError(double arclength,

double tolerance, int pathDirection) method is available. It returns the maximal

arc length value in the specified direction (+1 or -1) for which the second-order term

of the expansion is smaller than the tolerance. The double distTo2ndError(double

arclength, double tolerance, int pathDirection) method returns the maximal

value for which the third-order term is smaller than the tolerance.

3.2 LineTraj class

A linear trajectory is created in case the curve we are concerned with is a straight line.

The LineTraj class derives from the Trajectory base class and offers four constructors as

shown in table 1. The first one takes the XYZPoint at the middle of the line, a XYZVector

pointing along either direction of the line and the arc length range as arguments. When

the direction vector is normalised, one can use the somewhat faster second constructor by

additionally supplying a boolean whose value is not used. The third constructor allows one

to explicitly specify whether the direction vector offered is normalised or not. Note that this

is done through the isNormalised enum, which contains the values yes and no. Finally,

one can construct a LineTraj from the positions of the two end-points of the line.
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LineTraj( const XYZPoint& middle,

const XYZVector& dir,

const std::pair<double,double>& range );

LineTraj( const XYZPoint& middle,

const XYZVector& dir,

const std::pair<double,double>& range,

bool normalized );

enum isNormalized {yes,no}

LineTraj( const XYZPoint& middle,

const XYZVector& dir,

const std::pair<double,double>& range,

isNormalized boolvalue );

LineTraj( const XYZPoint& begPoint,

const XYZPoint& endPoint );

Table 1: Constructors for the LineTraj class.

3.3 CircleTraj class

The CircleTraj class is designed to be used when dealing with a curve which is a

part of a circle. It offers two constructors as shown in table 2. The first one expects

references to the centre point of the circle section, the vectors from there pointing towards

the beginning and end of the circle section and the radius. It will consider the circle section

to be the shorter arc between the end-points derived from the input description. The

second constructor takes references to the centre point of the circle section, the normal

vector to the plane spanned by the circle section, a vector pointing from the centre towards

the starting point of the circle section and the range of the product of the radius and the

opening angle corresponding to the circle section as input.

CircleTraj( const XYZPoint& origin,

const XYZVector& dir1,

const XYZVector& dir2,

double radius );

CircleTraj( const XYZPoint& origin,

const XYZVector& normal,

const XYZVector& origin2point,

const std::pair<double,double>& range );

Table 2: Constructors for the CircleTraj class.
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3.4 ParabolaTraj class

When dealing with a parabola, one can create a parabolic trajectory. The ParabolaTraj

class offers a single constructor, shown in table 3. It takes references to the centre point,

the first and second derivatives at the centre point and a set of begin- and end-points of

the parabola as arguments. At present this trajectory type is not used in the tracking code.

ParabolaTraj( const XYZPoint& middle,

const XYZVector& dir,

const XYZVector& curve,

const std::pair<double,double>& range );

Table 3: Constructor for the ParabolaTraj class.

3.5 StateTraj class

The trajectory class designed to parameterise the shape of a track at a state’s position

is called StateTraj. A StateTraj trajectory can be constructed from a track State and

the local magnetic field vector, see table 4. The second constructor requires a state vector,

the z-coordinate and the magnetic field vector at the position of the state. It uses the

magnetic field vector and the charge from the state vector to determine the derivative and

curvature for the trajectory expansion.

StateTraj( const State& state,

const XYZVector& bField );

StateTraj( const Gaudi::Vector5D& stateVector,

double z,

const XYZVector& bField );

Table 4: Constructors for the StateTraj class.

3.6 DifTraj class

As stated in section 2.2, a state trajectory can calculate the change in location of its

closest point as a function of the state parameters. In order to offer the possibility for each

trajectory type to calculate the change in location of their closest point as a function of their

parameterisation, they can inherit from a class derived from Trajectory, called DifTraj.

It is templated and takes the number of parameters defining the inheriting trajectory type
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as a construction argument. The derivatives matrix is a

ROOT::Math::SMatrix<double,3,N> returned by the derivative(arclength) method.

Through the ROOT::Math::SVector<double,N> parameters() method, the values of the

parameters to which the derivatives are taken can be obtained. In case of a state trajectory

these would be the state parameters.

3.7 TrajPoca tool

The “Points Of Closest Approach” – TrajPoca – tool determines where two trajectories

come closest to each other. It performs a distance minimisation in three dimensions;

the minimize member function, see table 5, expects references to the two trajectories,

corresponding arc length variables, to the distance vector to be determined, the user desired

precision and whether or not the arc length validity range should be respected.

The minimisation is an iterative process, beginning by calling expansions at the starting

values of the arc lengths arclength1 and arclength2. It will determine which points on

these expansions are closest to each other as well as the corresponding arc length values

and distance vector. In over 99% of the cases the minimum is located during the first

step of the iteration. However, if the two expansions keep approaching each other as the

distance from the expansion points increases and either one passes their distTo2ndError

value, new expansions will be created at those arc length values. This process continues

until the minimum is reached within the desired accuracy, which is 10 µm for the OT and

2 µm for the other measurements. It is also possible to minimise the distance between a

point and a trajectory with the TrajPoca tool.

During the minimisation the code performs self-monitoring in order to intercept attempts

for trajectories which are (nearly) parallel and diverging minimisations and stops in those

cases. Also oscillations around a minimum are caught, passing on as the result the better of

the two arc length values. The code can also deal with trajectories containing a description

of a curve composed of several pieces, e.g. a set of straight line segments at angles to

each other, by pushing the iteration step over the border between the pieces, preventing

the minimisation to oscillate at such a point.

The TrajPoca tool is located in Kernel/LHCbAlgs in order to be a generally available

tool; i.e. non-tracking code using it will not need to link to a tracking tools package.

4 Use in Tracking Sub-detectors

As discussed above, the trajectory model uses trajectory objects – returned by the

relevant tracking sub-detector’s code – to describe the curves in global coordinate space

corresponding to the recorded hits. The strips (for the VELO, TT and IT) and wires (for

9



StatusCode minimize( const Trajectory& traj1,

double& arclength1,

bool restrictRange1,

const Trajectory& traj2,

double& arclength2,

bool restrictRange2,

XYZVector& distance,

double precision );

Table 5: Minimisation method of the TrajPoca tool.

the OT) are used as reference information and supply the shape to the trajectory. In case

of a silicon strip, the curve will be located at the centre of the charge deposition; for an OT

hit the curve is located on the hit wire. In the present model linear trajectories are created

for the VELO φ, TT, IT and the OT measurements; circular trajectories are used for the

VELO R measurements.

4.1 ST trajectories

The TT and IT sub-detector code provides std::auto ptr pointers (see section 4.4

for a technical reminder) to trajectories through a trajectory method defined in the

DeSTSector class (STDet package [11]). The method takes the STChannelID of the

closest strip to the centre of charge deposition and the offset in units of pitch as arguments.

It internally uses a single LineTraj running orthogonal to the strips in the x-direction

through the middle of the sensor as a reference when constructing the LineTraj which

is to be returned. The middle point of that LineTraj is determined from the offset, the

strip number as in the STChannelID and the position of the first strip along the reference

LineTraj. The code knows the direction and length of a strip, which combined with the

just determined point allows to create a LineTraj shaped like a strip, but at the location

of the centre of the charge deposition as specified by the offset.

4.2 VELO trajectories

The VELO sub-detector code in the VeloDet package [12] offers a similar trajectory

method to the ST, taking a LHCbID and the offset as arguments. It delegates to

DeVeloSensor, passing a VeloChannelID and the offset. For φ strips the DeVeloPhiType

class creates LineTraj trajectories. It uses the end-points of the strip corresponding to the

VeloChannelID and depending on the sign of the offset it also gets the end-points of the

next or previous strip. The offset times the difference between starting points of the strip
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and the called adjacent strip plus the start point of the called strip gives the start point of

the desired LineTraj. The end-point is determined analogously. In case of a VELO R hit,

the DeVeloRType class creates a CircleTraj. Using the VeloChannelID to identify the

number of the nearest strip, both the radius and the minimum and maximum φ angles of

that strip are obtained. The offset times the strip pitch is added to the radius and together

with the φ range is used to make a CircleTraj at the centre of charge deposition. All

trajectories are made such as to have increasing arc length in the counter-clockwise direction

when looking in the direction of increasing z.

4.3 OT trajectories

The Outer Tracker code supplies LineTraj trajectories to describe OT measurements

(OTDet package [13]). Unlike the silicon strip trajectories which represent the centre of

the deposited charge, the OT trajectories are located on the wires themselves. It is only

later on, during the track fit, that the drift distance in the gas of the straw, equivalent

to the centre of charge deposition, is determined. The call for a trajectory std::auto ptr

can be made to the DeOTDetector class, whose trajectory method takes the LHCbID

of the wire as argument. The call is passed on to the DeOTModule class together with the

OTChannelID derived from the LHCbID. DeOTModule contains a LineTraj in x through

the middle of the module similar to the ST case for each of the two monolayers of a module.

As it knows the wire position, direction and length, it can make a LineTraj for the wire,

which it then returns.

4.4 Trajectories ownership and std::auto ptr

A trajectory object representing a measurement is created using a call to new and

ownership is passed to the caller via a std::auto ptr [14]. The caller can pass on references

to the trajectory to other classes without loosing the ownership of the trajectory. Creating

another std::auto ptr which points to the address contained by the original one results in

the original std::auto ptr becoming a NULL pointer, i.e. only one std::auto ptr can be

valid per trajectory. Once the std::auto ptr goes out of scope, the trajectory object is

automatically deleted.

5 Trajectories for Alignment

The LHCb trajectory model is presently being expanded to provide a consistent event

model usable not only in the Kalman fitting code, but also for the purpose of alignment.

A dedicated AlignTraj trajectory class can be found in the LHCbKernel package. The
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AlignTraj inherits relevant functionality from the DifTraj class, see 3.6. It takes a

(external) trajectory as input, which it can both rotate and translate. It provides the

derivatives with respect to these rotations and translations as a result for the alignment

method to analyse.

6 Conclusion

Trajectories are presently used in the pattern recognition, track fitting, sub-detector and

alignment code as well as in the Tsa [15] code for L0 confirmation. This note has described

the status of the Trajectory Model as implemented in Brunel v31r2.

At present the ideal shapes of the detector elements are used, i.e. straight lines and

circle sections. Changing to any other detector element shape is, seen from a tracking point

of view, a matter of introducing the corresponding trajectories to describe them. The goal

of decoupling the details of the geometry from the tracking code has thereby been achieved

with the present trajectory model.
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