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How to get started?

PracticalitiesPracticalities
• Packages of new event model not yet part of official LHCb

software releases
• Exceptions: LHCbID.h in Kernel/LHCbKernel, Event/TrackEvent

• Working versions of all packages (done so far) for end of week

• Then all packages to go into next software release (thanks Marco)

• Plan to follow the official releases with updates, etc. …
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How to get started?

Finding informationFinding information
• Doxygen documentation of “at-present” classes and algorithms

regularly updated at
http://cern.ch/eduardo.rodrigues/lhcb/tracking/event_model

• CVS repository is where to check for latest versions

• Twiki pages of Track Event Model Task Force at
https://uimon.cern.ch/twiki/bin/view/LHCb/LHCbTrackModelTaskForce

• Jose and myself are always happy to answer questions/doubts/…
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TracksTracks
• Base class for tracks

• Other track classes may inherit from it, say internally in

pattern recognition algorithms, if really needed
• Should be avoided as much as possible …

• Additional features may be introduced in the base class, instead?

• Main source of information (see later)
• No need – in most cases - to go through the states as in old event model

• “first state” (the one always stored on DST) for getting p, pt, …, in many practical cases

StatesStates
• Internal representation of the track, at different positions

• Not need in most cases
• The extrapolators do a lot of the job for you (see later)

Guidelines
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ExtrapolatorsExtrapolators
• A variety of extrapolators, adapted and extended from the old 

model

• Useful for getting track info at a certain position (z, plane)

• User passes a track as an argument; it gets a state
• Makes available: position, momentum, covariance matrix, etc.

• TrackMasterExtrapolator delegates the work
• Is still called TrackFirstCleverExtrapolator – to be changed

Guidelines
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Ideal pattern recognition package: Ideal pattern recognition package: Tr/TrackIdealPRTr/TrackIdealPR
• Ideal pattern recognition adapted to work with new model

• Main algorithm for testing projectors, extrapolators, fitting, …
• First users got already their hands dirty with it: Jacopo, Edwin

• You can be the next …

Guidelines
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How To’s

Side remarksSide remarks
• We made the choice of passing references

as arguments to methods
• No need to take care about deletion of objects

• E.g.: natural thing to do in tools (such as extrapolators) that do some job

with a track but do not get ownership, etc.

• “clone” methods return pointers
• Since the user is then naturally responsible for what it clones

• User is responsible for deleting the objects cloned
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// .cpp file

Tracks* tracksCont = get<Tracks>( "/Event/Rec/Track/Ideal" );

debug() << "Tracks container contains " << tracksCont -> size()

<< " tracks" << endreq;

Tracks::const_iterator iTrk;

for ( iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk ) {

Track& track = *(*iTrk);

debug()

<< "-> Track  # " << track.key() << endreq

<< "  * charge                  = " << track.charge() << endreq

<< "  * is of type              = " << track.type() << endreq

<< "  * is Backward         = " << track.checkFlag( TrackKeys::Backward ) << endreq

<< "  * # measurements = " << track.nMeasurements() << endreq;

// …

// position and momentum of the “first state” (i.e. the one stored on the DST)

HepPoint3D pos;

HepVector3D mom;

HepSymMatrix cov6D;

track.positionAndMomentum( pos, mom, cov );

// …

}

// .h file
// from TrackEvent

#include "Event/Track.h"

#include "Event/TrackKeys.h"

Getting general track info
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// .cpp file

…

Tracks::const_iterator iTrk;

for ( iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk ) {

Track& track = *(*iTrk);

debug()

<< "-> Track  # " << track.key() << endreq

<< "  * is Valid                 = " << track.checkFlag( TrackKeys::Valid ) << endreq

<< "  * is Unique             = " << track.checkFlag( TrackKeys::Unique ) << endreq

<< "  * from algorithm    = " << track.history( ) << endreq

<< "  * Kalman fitted?    = " << track.checkHistoryFit( TrackKeys::Kalman ) << endreq

<< "  * has State at location BegRich1?    = " << track.hasStateAt( StateKeys::BegRich1 ) << endreq;

…

// get the state closest to, say, z = 2000.

double z = 2000.:

State& aState = track.closestState( z );

…

}

Tracks flags, history, …

// .h file
// from TrackEvent

#include "Event/TrackKeys.h"

#include "Event/StateKeys.h"
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// .cpp file
// Retrieve TrackExtrapolator tool

m_extrapolator = tool<ITrackExtrapolator>( « TrackHerabExtrapolator" );

…

Tracks::const_iterator iTrk;

for ( iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk ) {

…

Track& track = *(*iTrk);

double z = 3000.;

State myState;

// propagate the track to a z-position (getting all info via a State)

StatusCode sc = m_extrapolator -> propagate( track, z, myState );

if ( sc.isSuccess() ) {

debug() << “ - state at position = “ << myState.position() << endreq

<< “ momentum = “ << myState.momentum() << endreq

<< “ transverse momentum Pt = “ << myState.pt() << endreq;

// to access the position-and-momentum full covariance matrix

HepSymMatrix& cov6D = myState.posMomCovariance();

}

…

}

// .h file
// from TrackInterfaces

#include “TrackInterfaces/ITrackExtrapolator.h“

…

ITrackExtrapolator*   m_extrapolator;

Extrapolating a track (I)



Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 11/11

// .cpp file
// Retrieve TrackExtrapolator tool

m_extrapolator = tool<ITrackExtrapolator>( « TrackHerabExtrapolator" );

…

Tracks::const_iterator iTrk;

for ( iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk ) {

…

Track& track = *(*iTrk);

double z = 3000.;

// propagate the track to a z-position (directly getting all info without passing via the State - PREFERRED)

HepPoint3D pos;

HepVector3D mom;

HepSymMatrix cov6D;

StatusCode sc = m_extrapolator -> positionAndMomentum( track, z, pos, mom, cov6D );

if ( sc.isSuccess() ) {

debug() << “ - track at z-position = “ << z << endreq

<< “ has 3D-position = “ << pos << endreq

<< “ momentum = “ << mom << endreq;

}

…

}

// .h file
// from TrackInterfaces

#include “TrackInterfaces/ITrackExtrapolator.h“

…

ITrackExtrapolator*   m_extrapolator;

Extrapolating a track (II)


