
Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 1/11

* How to get started
- praticalities

- finding information

* Some guidelines

• HowTo’s

New Track Event Model New Track Event Model HowToHowTo
Jose A. Hernando, E. RodriguesJose A. Hernando, E. Rodrigues

LHCbLHCb Software Week, CERN, 23rd May 2005Software Week, CERN, 23rd May 2005

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 2/11

How to get started?

PracticalitiesPracticalities
• Packages of new event model not yet part of official LHCb

software releases
• Exceptions: LHCbID.h in Kernel/LHCbKernel, Event/TrackEvent

• Working versions of all packages (done so far) for end of week

• Then all packages to go into next software release (thanks Marco)

• Plan to follow the official releases with updates, etc. …

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 3/11

How to get started?

Finding informationFinding information
• Doxygen documentation of “at-present” classes and algorithms

regularly updated at
http://cern.ch/eduardo.rodrigues/lhcb/tracking/event_model

• CVS repository is where to check for latest versions

• Twiki pages of Track Event Model Task Force at
https://uimon.cern.ch/twiki/bin/view/LHCb/LHCbTrackModelTaskForce

• Jose and myself are always happy to answer questions/doubts/…

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 4/11

TracksTracks
• Base class for tracks

• Other track classes may inherit from it, say internally in

pattern recognition algorithms, if really needed
• Should be avoided as much as possible …

• Additional features may be introduced in the base class, instead?

• Main source of information (see later)
• No need – in most cases - to go through the states as in old event model

• “first state” (the one always stored on DST) for getting p, pt, …, in many practical cases

StatesStates
• Internal representation of the track, at different positions

• Not need in most cases
• The extrapolators do a lot of the job for you (see later)

Guidelines

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 5/11

ExtrapolatorsExtrapolators
• A variety of extrapolators, adapted and extended from the old

model

• Useful for getting track info at a certain position (z, plane)

• User passes a track as an argument; it gets a state
• Makes available: position, momentum, covariance matrix, etc.

• TrackMasterExtrapolator delegates the work
• Is still called TrackFirstCleverExtrapolator – to be changed

Guidelines

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 6/11

Ideal pattern recognition package: Ideal pattern recognition package: Tr/TrackIdealPRTr/TrackIdealPR
• Ideal pattern recognition adapted to work with new model

• Main algorithm for testing projectors, extrapolators, fitting, …
• First users got already their hands dirty with it: Jacopo, Edwin

• You can be the next …

Guidelines

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 7/11

How To’s

Side remarksSide remarks
• We made the choice of passing references

as arguments to methods
• No need to take care about deletion of objects

• E.g.: natural thing to do in tools (such as extrapolators) that do some job

with a track but do not get ownership, etc.

• “clone” methods return pointers
• Since the user is then naturally responsible for what it clones

• User is responsible for deleting the objects cloned

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 8/11

// .cpp file

Tracks* tracksCont = get<Tracks>("/Event/Rec/Track/Ideal");

debug() << "Tracks container contains " << tracksCont -> size()

<< " tracks" << endreq;

Tracks::const_iterator iTrk;

for (iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk) {

Track& track = *(*iTrk);

debug()

<< "-> Track # " << track.key() << endreq

<< " * charge = " << track.charge() << endreq

<< " * is of type = " << track.type() << endreq

<< " * is Backward = " << track.checkFlag(TrackKeys::Backward) << endreq

<< " * # measurements = " << track.nMeasurements() << endreq;

// …

// position and momentum of the “first state” (i.e. the one stored on the DST)

HepPoint3D pos;

HepVector3D mom;

HepSymMatrix cov6D;

track.positionAndMomentum(pos, mom, cov);

// …

}

// .h file
// from TrackEvent

#include "Event/Track.h"

#include "Event/TrackKeys.h"

Getting general track info

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 9/11

// .cpp file

…

Tracks::const_iterator iTrk;

for (iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk) {

Track& track = *(*iTrk);

debug()

<< "-> Track # " << track.key() << endreq

<< " * is Valid = " << track.checkFlag(TrackKeys::Valid) << endreq

<< " * is Unique = " << track.checkFlag(TrackKeys::Unique) << endreq

<< " * from algorithm = " << track.history() << endreq

<< " * Kalman fitted? = " << track.checkHistoryFit(TrackKeys::Kalman) << endreq

<< " * has State at location BegRich1? = " << track.hasStateAt(StateKeys::BegRich1) << endreq;

…

// get the state closest to, say, z = 2000.

double z = 2000.:

State& aState = track.closestState(z);

…

}

Tracks flags, history, …

// .h file
// from TrackEvent

#include "Event/TrackKeys.h"

#include "Event/StateKeys.h"

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 10/11

// .cpp file
// Retrieve TrackExtrapolator tool

m_extrapolator = tool<ITrackExtrapolator>(« TrackHerabExtrapolator");

…

Tracks::const_iterator iTrk;

for (iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk) {

…

Track& track = *(*iTrk);

double z = 3000.;

State myState;

// propagate the track to a z-position (getting all info via a State)

StatusCode sc = m_extrapolator -> propagate(track, z, myState);

if (sc.isSuccess()) {

debug() << “ - state at position = “ << myState.position() << endreq

<< “ momentum = “ << myState.momentum() << endreq

<< “ transverse momentum Pt = “ << myState.pt() << endreq;

// to access the position-and-momentum full covariance matrix

HepSymMatrix& cov6D = myState.posMomCovariance();

}

…

}

// .h file
// from TrackInterfaces

#include “TrackInterfaces/ITrackExtrapolator.h“

…

ITrackExtrapolator* m_extrapolator;

Extrapolating a track (I)

Eduardo Rodrigues LHCb Software Week, CERN, 23rd May 2005 11/11

// .cpp file
// Retrieve TrackExtrapolator tool

m_extrapolator = tool<ITrackExtrapolator>(« TrackHerabExtrapolator");

…

Tracks::const_iterator iTrk;

for (iTrk = tracksCont->begin(); tracksCont->end() != iTrk; ++iTrk) {

…

Track& track = *(*iTrk);

double z = 3000.;

// propagate the track to a z-position (directly getting all info without passing via the State - PREFERRED)

HepPoint3D pos;

HepVector3D mom;

HepSymMatrix cov6D;

StatusCode sc = m_extrapolator -> positionAndMomentum(track, z, pos, mom, cov6D);

if (sc.isSuccess()) {

debug() << “ - track at z-position = “ << z << endreq

<< “ has 3D-position = “ << pos << endreq

<< “ momentum = “ << mom << endreq;

}

…

}

// .h file
// from TrackInterfaces

#include “TrackInterfaces/ITrackExtrapolator.h“

…

ITrackExtrapolator* m_extrapolator;

Extrapolating a track (II)

