

L0 Bandwidth Division for the TDR

Eduardo Rodrigues, CERN

I. LO optimization: set-up and method

- set-up and method
- combination of channels -> overall trigger optimization

II. LO optimization on trigger efficiency without tagging information

- (sub-)trigger performance for individual signal channels
- optimal trigger performance and bandwidth division

IV. Conclusions and final remarks

L0 Optimization – Set-up and Method

Outcome of latest discussions:

- > samples too small to perform a reliable optimization on the trigger power (i.e. including tagging information)
 - -> larger statistics requested to be produced for a restricted set of "representative channels"
- > for the time being, LO optimization to be performed without tagging information ...

■ Changes in set-up:

- cut on veto's height of second peak fixed at 3
 - -> LOxL1 efficiency improves, in particular for hadronig channels (refer to Massi's presentations for more details)
- ✓ di-muon trigger also allowed to override the SPD & Pile-up veto multiplicity cuts

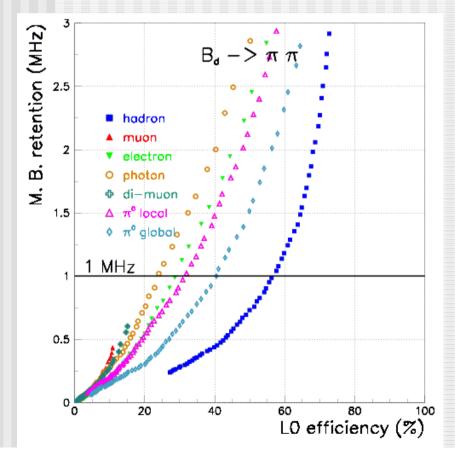
 (refer to Massi's presentations for further details and justification)
- ✓ optimizing on selected events
- ✓ optimizing on the trigger efficiency
- \checkmark cuts on the π^0 local and global triggers fixed to 4.5 and 4.0 GeV respectively (-> small bandwidth)

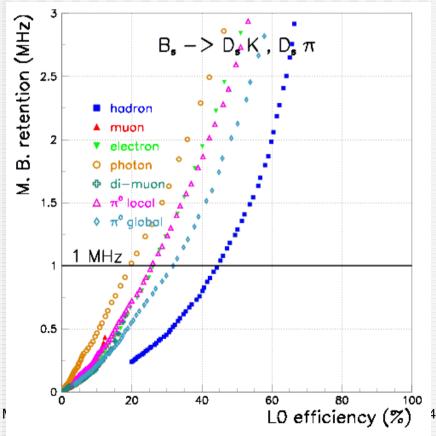
L0 optimization – Combination of Channels

- Present scenario: some channels representative of each type of measurement
 - → each of the 5 groups is optimized separately
 - → optimization such that each group has the same loss in performance
 - = equal LHCb performance on each type of measurement

Quantity measured	Channel(s)	# events # off. sel. events		# off. selelcted events for optimization	
α	Β _d -> ππ	49 k	3374	1690	
β	B_d -> J/Ψ(μμ/ee) K_s	99 k	1531	773	
γ	$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	337.5 k	7369	3705	
2δγ	$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	50 k	3863	1951	
Rare decays	B _d -> Κ* γ	48 k	817	410	

(Using half the sample (odd-numbered events) for the optimization)



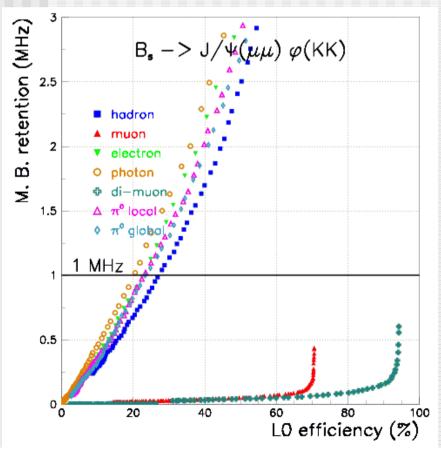


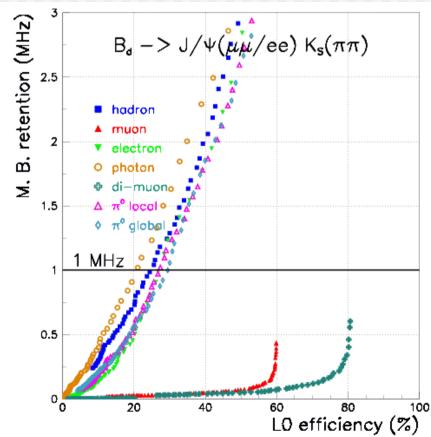
L0 Performance – cases of $\rm B_d$ -> $\pi\pi$, $\rm \, B_s$ -> $\rm D_s\, K\,/\, D_s\pi$

Max. efficiency obtainable inclusively by each trigger!

- ✓ each curve corresponds to considering separately the combination
 L0 trigger = sub-trigger + pile-up veto & multiplicity Cuts
- -> it shows how much one could in principle obtain independently from each trigger

Trigger I

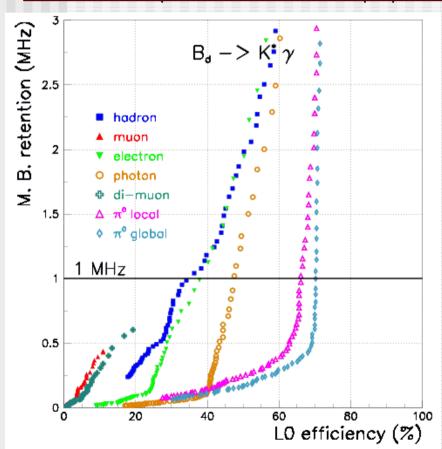



L0 Performance – cases of B_s -> J/Ψ(μμ) $\phi(KK)$, B_d -> J/Ψ(μμ/ee) $K_s(\pi\pi)^{\text{Curic Followships}}$

Max. efficiency obtainable inclusively by each trigger!

✓ each curve corresponds to considering separately the combination
 L0 trigger = sub-trigger + pile-up veto & mult. Cuts

-> it shows how much one could in principle obtain independently from each trigger


MARIE CURI

Max. efficiency obtainable inclusively by each trigger!

- each curve corresponds to considering separately
 the combination
- LO trigger = sub-trigger + pile-up veto & mult. cuts

 (because max. obtained with no veto)
- -> it shows how much one could in principle obtain independently from each trigger

L0 optimization without Tagging Information (I)

1. Optimizing each channel separately on the LO efficiency ... ignoring the tagging information ...

Channels	Optimized L0 eff. (%)
Β _d -> ππ	58.1 +/- 1.2
B_d -> J/Ψ(μμ/ee) K_s	90.5 +/- 1.1
$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	47.3 +/- 0.8
B_s -> J/Ψ (μμ) Φ	94.1 +/- 0.5
B _d -> K* γ	78.4 +/- 2.0

Max. eff. obtained with separate optimization of each channel

(eff. calculated on independent sample)

!! By themselves alone the pile-up veto cut on the height of second peak and the SPD and Pile-up veto multiplicity cuts
reduce the LO efficiency of all channels to ~ 70-80 %!!

L0 Trigger Combined optimization

Combined optimization of all channels!

2. Optimizing the trigger on the LO efficiency ... for a minimal total loss in efficiency ...

Channels	Max L0 eff. (%)	"Optimal trigger" L0 eff. (%)	Loss in L0 eff. (%)	
Β _d -> ππ	58.1 +/- 1.2	57.0 +/- 1.2	1.9	
$B_d \rightarrow J/\Psi(\mu\mu/ee) K_s$	90.5 +/- 1.1	85.0 +/- 1.3	6.1	
$B_s \rightarrow D_s K$ $B_s \rightarrow D_s \pi$	47.3 +/- 0.8	46.7 +/- 0.8	1.3	
$B_s \rightarrow J/\Psi (\mu\mu) \Phi$	94.1 +/- 0.5	91.4 +/- 0.6	2.9	
B _d -> K* γ	78.4 +/- 2.0	75.9 +/- 2.1	3.2	

L0 eff. (%) @ LHCC presentation					
	61				
	-				
	45				
	91				
	77				

... hadronic channels seem somewhat slightly "favoured" ...

Settings as of that time, i.e. no multiplicity cuts!

Conclusions and Final Remarks

■ after imposing cuts "dictated" by L0xL1 studies the L0 trigger is performing well with settings close to those at the time of the last LHCC presentation ...

... and still the L0 efficiencies are ~ same though L0xL1 will improve ...

L0 trigger	$\mathbf{E_t^{had}}$	$\mathbf{E_{T}}^{\mathbf{\mu}}$	$\mathbf{E_{T}}^{\mathbf{e}}$	$\mathbf{E_{T}}^{\gamma}$	$\mathbf{E}_{\mathbf{T}}$ μμ	$oldsymbol{\pi^0_{ m global}}$	$\pi^0_{ m local}$	Veto Cut
Old Thresholds (GeV)	3.52	1.23	2.60	3.00	1.42	4.90	4.85	3.0
NewThresholds (GeV)	3.6	1.1	2.8	2.6	1.3	4.0	4.5	3.0

& SPD and Pile-up veto multiplicity cuts fixed at 280 and 112, respectively

■ muon /di-muon bandwidth ~ 100 / 140 kHz (+/- 20kHz) after veto and multiplicity cuts