Status of the Tracking Event Model

Jose A. Hernando, E. Rodrigues

Visiting the Plan

Future work:

Before 3/05, and later...
Visiting the planning

Step 1: Track, State, IEextrapolator

• **Goal:** standard output of the Fitting Algorithms (on/off)line

• **Steps:**
 - Agreement in the base classes
 - Implementation of converters
 - Modify client/tracking code to use these classes

Step 2: Measurement, Node, IPprojector

• **Goal:** common base classes for PR and FA algorithms

• **Steps:**
 - Re-built all information from persistency
 - Agreement in the base classes
 - Use of Node, Measurement, Projector in the tracking code
Agreement if the base classes

The classes: Track, State, Iextrapolator

1. Largely debated via e-mail and in presentations
2. A version with input from many people:
 1. We tried to combined different visions as much as possible
 2. But in some places we have to take a decision
3. Event Classes has two sides:
 1. persistency (optimized) + transient (in progress…)
4. It is time to use the classes and figure-out the problems
Step I: The classes, current view

A TRACK:

- flag (bitField) TYPE, HISTORY, FLAG
- chi2/ndof, ndof (quality)
- physics State = “The persistent State”
- <LHCbID> = list of LHCbID
- <States*> = “the *transient* states”

Methods:
- Access to physics state: p, pt, slopes, position
- Access states: at z, plane, LOCATION

TYPE: Velo, VeloR, Upstream, Downstream, Ttrack, Long
HISTORY: Algorithm: ie TrgForward
FLAG: Valid,

A STATE:

- flag (bitField) TYPE, LOCATION
- vector-state, covariance, z

Methods:
- Access to physics contents:
 - fix (x,y,tx,ty), overwritable q/p

TYPE: Linear, HasMomentum
LOCATION: BeginVelo, EndVelo, atTT, …
Step I: Converters and Client users

Step 1.2: Converters

- **Goal:** Convert the output of the Fit Algorithms to Track/States
 - OnLine: TrFitTrack -> Track, TrgTrack <-> Track
 - **Status:** Almost done, compile, need to check, done by end of the year
 - Problems: serializers, LHCbID muon, revisiting flags...

Step 1.3: Use of the classes (Track, State, IExtrapolator):

- **Goal:** Client Algorithms (RICH, Muon) use Track/States
- Clients: Replace and use Track/State/IExtrapolator
 - Please feed back us the problems…
- Tracking: How much you can use Track/State?, derived classes?
 - Trigger: what is left for a TrgTrack, TrgState?
- Others: MC?, Tool to retrieve Clusters from LHCbID
- **Status:** I will say should be done by end of 2/05
Step II: Recovering the track and more

Step 2.1: Recovering the track

- **Goal**: Recreate a Track from persistency, and refit it, from the list of LHCbID
- But: Is this possible?
- PR algorithms should be divided in two:
 - Standalone: return track segment(s) and a their LHCbID’s
 - From a list of LHCbID: get a local track segment
 - We need to check this part!!
- **Status**: *will be nice to have a confirmation of this before end 2/05*

Step 2.2: Agreement of the internal tracking classes

- **Goal**: define the common classes (only for the tracking community)
- Measurement, Node, Projector

Step 2.3: Use the classes in the PR and FM algorithms

- **Goal**: To be able to share/add/remove easily PR and FM algorithms
- **Status**: *I see very, very unlike for 03/05, but this can wait*
Status and plans

Step I:

- Track/State/IExtraplator are OUT
 - "Multi"cultural classes but "No one" is perfect
- Converters:
 - FA tracks to Track, *almost done*
 ![12/04]
 - Use of Track/State/Iextrapolator
 - Clients: go and used, tell us the problems
 - Tracking: replacing TrgTrack, TrFitTrack can wait

Step II:

- Recover and refit the track (from LHCbIDs)
 ![... 2/05]
 - Modify the PR algorithms
- Tracking internal classes: Measurement, Node, Iprojector
 ![... /05]
- Use of these classes