Tracking Event Model, Status

Status of the Tracking Event Model

Jose A. Hernando, E. Rodrigues

Visiting the Plan

Future work:

Before 3/05, and later...

Visiting the planning

Step 1: Track, State, IExtrapolator

- Goal: standard output of the Fitting Algorithms (on/off)line
- Steps:
 - Agreement in the base classes
 - Implementation of converters
 - Modify client/tracking code to use these classes
- **Step 2: Measurement, Node, IProjector**
 - Goal: common base classes for PR and FA algorithms
 - Steps:
 - **Re-built all information from persistency**
 - Agreement in the base classes
 - Use of Node, Measurement, Projector in the tracking code

Agreement if the base classes

The classes: Track, State, Iextrapolator

- 1. Largely debated via e-mail and in presentations
- 2. A version with input from many people:
 - 1. We tried to combined different visions as much as possible
 - 2. But in some places we have to take a decision
- 3. Event Classes has two sides:
 - 1. persistency (optimized) + transient (in progress...)
- 4. It is time to use the classes and figure-out the problems

Step I: The clases, current view

A TRACK:

flag (bitField) TYPE, HISTORY, FLAG

chi2/ndof, ndof (quality)

physics State = "The persistent State"

<LHCbID> = list of LHCbID

```
<<u>States</u>*> = "the *transient* states"
```

Methods:

Access to physics state: *p,pt, slopes, position* Access states: *at z, plane, LOCATION*

TYPE: Velo, VeloR, Upstream, Dowstream, Ttrack, Long HISTORY: Algorithm: ie TrgForward FLAG: Valid,

State

A STATE:

flag (bitField) TYPE, LOCATION

vector-state, covariance, z

Methods:

Access to physics contents:

fix (x,y,tx,ty), overwritable q/p

TYPE: Linear, HasMomentum LOCATION: BeginVelo, EndVelo, atTT,...

Step I: Converters and Client users

Step 1.2: Converters

- Goal: Convert the output of the Fit Algorithms to Track/States
- OnLine: TrFitTrack -> Track, TrgTrack <->Track
- Status: Almost done, compile, need to check, done by end of the year
 - Problems: serializers, LHCbID muon, revisiting flags...

Step 1.3: Use of the classes (Track, State, IExtrapolator):

- Goal: Client Algorithms (RICH, Muon) use Track/States
- Clients: Replace and use Track/State/IExtrapolator
 - Please feed back us the problems...
- Tracking: How much you can use Track/State?, derived classes?
 - Trigger: what is left for *a TrgTrack, TrgState*?
- Others: MC?, Tool to retrieve Clusters from LHCbID
- **Status**: *I will say should be done by end of 2/05*

Step II: Recovering the track and more

Step 2.1: Recovering the track

- Goal: Recreate a Track from persistency, and refit it, from the list of LHCbID
- But: Is this possible?
- PR algorithms should be divided in two:
 - Standalone: return track segment(s) and a their LHCbID's
 - From a list of LHCbID: get a local track segment
 - We need to check this part!!
- **Status:** will be nice to have a confirmation of this before end 2/05

Step 2.2: Agreement of the internal tracking classes

- **Goal**: define the common classes (only for the tracking community)
- Measurement, Node, Projector

Step 2.3: Use the classes in the PR and FM algorithms

- **Goal:** To be able to share/add/remove easily PR and FM algorithms
- Status: I see very, very unlike for 03/05, but this can wait

Status and plans

Step I:

- Track/State/IExtraplator are OUT
 - "Multi"cultural classes but "No one" is perfect
- Converters:
 - FA tracks to Track, almost done
- Use of Track/State/Iextrapolator
 - Clients: go and used, tell us the problems
 - Tracking: replacing TrgTrack, TrFitTrack can wait

Step II:

- Recover and refit the track (from LHCbIDs)
 - Modify the PR algorithms
- Tracking internal classes: Measurement, Node, Iprojector_
- Use of these classes

2/05

... 2/05

/05