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Status of new tracking data model
“End-user” Classes

Jose Hernando (CERN) , Eduardo Rodrigues (NIKHEF)

In short ..
Driving idea:
> agree on the interfaces

> move the code adiabatically in steps

= code always working, smooth implementation of the interfaces

Visible to the user:
> tracks & states
> propagators

To help the tracking/pattern recognition developers:
> nodes & measurements

> projectors

Details on status of implementation:
http://cern.ch/eduardo.rodrigues/lhcb/tracking/event_model/index.html

( note: place of evolving ideas/implementations ... )
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Working plan

1. Reach agreement on TrTrack, TrState, extrapolators interface

0 GOAL: standard output of all fitting algorithms, online & offline
> client interface: how to use the tracks, ..
> minimal interference with present code

- e.g. leave measurements untouched at this stage

QO STEPS: 1a) reach final agreement on this set of classes (today?)

1b) implementation of converters
» TrFitTrackToTrTrackCnv & TrgTrackToTrTrackCnv

- needed to make sure the TrTracks work !

2a) make TrFitTrack & TrgTrack inherit from TrTrack
> at this point we could already imagine some full MC production with new model !

Q TIMESCALE: 1a) end of the week
1b) 1 week after agreement (implementation + test)
2a) 2 weeks
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Working plan

2. Reach agreement on TrMeasurement, TrNode, projectors interface

0 GOAL: have some common base classes for

pattern recognition and fitting algorithms
> re-use as much as possible the existing code and packages
» Tr(g)Event minimally/not touched
» end-user/client code is unchanged !

Q STEPS: 1a) get some first agreement on proposed structure
> projectors as Gaudi tools, need for TrMeasurement & TrNode classes

1b) re-build all necessary info from persistency
2a) XxxClusterOnTrack replaced by TrNode,
XxxCluster derived from TrMeasurement

2b) pattern recognition and fitting algorithms make full use of
projectors and new measurement classes
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TrTracks (1/2

Data members

> m_type: OK. Related enums are no problem to persistency
= variation: make use of bitfields

> m_historyFlag: OK. Enum.
= variation: change the name?

> m_errorFlag: renamed to m_flag . Uses bitfields with contents = { valid, ... }

> m_chi2: becomes m_chi2PerDoF
= more commonly used
> m_nDoF: keep it?
-> pros: fast access to info
- variation: remove it
-> pros: saves space, but needs some calculations to get it back
> m_closestState: state closest to beam-line, to be persistent

= more commonly used
= variation: call it m_firstState

> m_states: proposal to have a SmartRefVector
= persistency on demand: subset of states to be persistified (Beam-line, TT, T)
- variation: use a std::map with location as key (e.g. AtTT)
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TrTracks (2/2)

Public methods

> end-user methods for fast/easy access to general track information
e.g StatusCode positionAndMomentum (double z, ITrExtrapolator *extrapolator,
ParticleID &pid, HepPoint3D &pos, HepVector3D &mom, HepSymMatrix &covéD)

» methods to get direct access to closest state, by z-pos or plane
= commonly used methods in tracking code
-> pros: friendly and simple interface

> methods with extrapolator interface as argument:

-> pros: hide repeated operations
(e.g. aTrack->closestState()->extrapolate() )

= variation: move these methods to the extrapolator interface

> virtual methods: # brought to a minimum
= closestState(z/HepPlane3D), reset(), clone(), producedByAlgo()
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TrStates

Data members
> m_type: enum {StraightLine, HasMomentum} Fine
» m_location: enum key for state locations (e.g. AtTT, BegRICHL], ...)
> other data members: z-position, state vector, covariance

Public methods
> # of "setter” methods minimized

> methods related to position/slopes: implemented
= no need to be virtual

> methods with Q/P or momentum: all virtual

Derived classes

> 2 strategies to derive from TrState:
= TrStatel -> TrState (Q/P and 5 components)
= TrStatel, TrStateP -> TrState
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Tools - extrapolators

ITrExtrapolator

Public methods

> extrapolators to z and HepPlane3D
virtual StatusCode propagate (TrState *state, double z, ParticleID partId=ParticleID(211))=0

> Issue: need for an extrapolation to some kind of surface
= How to define a surface?
Can use fosr the moment a typedef to HepPlane3D in a "Surface” class
> interface ITrExtrapolator defined and essentially agreed ...

TrLinearExtrapolator

Public methods

> already implemented
> serves as (simple) example
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