The LHCb Trigger System

Eduardo Rodrigues
NIKHEF

On behalf of the LHCb Collaboration

- LHCb Experiment and Detector
- Trigger strategy and overview
- Hardware trigger: Level-0 components, decision unit, performance
- Software trigger: High Level Trigger farm, alleys, exclusive and inclusive strategies, decision, performance
- Outlook
The LHCb Trigger System

9 km diameter

Geneva

Jura

LHC

CERN
LHCb Detector

Ring Imaging Cherenkov
Calorimeters

Acceptance
250/300 mrad
10 mrad

Muon System

« Tracking » detectors

pp collision

LHCb Detector (side view)
Trigger Strategy & Overview

- LHC(b) Environment
- Trigger Overview & Strategy
LHC(b) Environment

LHC environment

- pp collisions at $E_{CM} = 14$ TeV
- $t_{bunch} = 25$ ns \leftrightarrow bunch crossing rate = 40 MHz
- $<L> = 2 \times 10^{32}$ cm$^{-2}$ s$^{-1}$ @ LHCb interaction region
 - \approx 10-50 times lower than for ATLAS/CMS

Cross sections

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Value</th>
<th>Event rate</th>
<th>Yield / year</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ total</td>
<td>~ 100 mb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ visible</td>
<td>~ 60 mb</td>
<td>~ 12 MHz</td>
<td></td>
</tr>
<tr>
<td>σ (c-cbar)</td>
<td>~ 3.5 mb</td>
<td>~ 700 kHz</td>
<td>$\sim 7 \times 10^{12}$ pairs</td>
</tr>
<tr>
<td>σ (b-bbar)</td>
<td>~ 0.5 mb</td>
<td>~ 100 kHz</td>
<td>$\sim 10^{12}$ pairs</td>
</tr>
</tbody>
</table>

Expected B-signal rates

- branching ratios $\sim 10^{-9} - 10^{-4}$
- $10 - 10^6$ events / year?

B-hadrons are heavy and long-lived!
The LHCb Trigger System

Trigger Overview

- **Level-0**
 - 12 MHz
 - pp collisions
 - Custom hardware
 - High E_T particles
 - Partial detector information

- **HLT**
 - 1 MHz
 - CPU farm -> software trigger
 - High E_T / IP particles
 - Full detector information

- **Storage**
 - ~2 kHz
 - Event size ~35 kb

Eduardo Rodrigues

Beauty 2006, Oxford, 28th Sept 2006
Trigger Strategy

Two-level Trigger

L0: high E_T / P_T particles
- hardware trigger, sub-detector specific implementation
- pipelined operation, fixed latency of 4 μs
- (minimum bias) rate reduction ~ 12 MHz $\rightarrow 1$ MHz

HLT: high E_T/P_T & high Impact Param. particles & displaced vertices & B-mass & …
- algorithms run on large PC farm with ~ 1800 nodes
- several trigger streams to exploit and refine L0 triggering information
- software reconstruction on part/all of the data
 - tracking / vertexing with accuracy close to offline
- selection and classification of interesting physics events
 - inclusive / exclusive streams
- rate reduction 1 MHz $\rightarrow 2$ kHz
- estimated event size ~ 30 kb

Eduardo Rodrigues

Be alert!
Level-0 Trigger

- Pile-up system
- Calorimeter
- Muon system

- **L0 Decision unit**
- **L0DU report**
- **1 MHz**
L0 Strategy

- **select high** E_T / P_T **particles**
 - hadrons / electrons / photons / π^0s / muons

- **reject complex / busy events**
 - more difficult to reconstruct in HLT
 - take longer to reconstruct in HLT

- **reject empty events**
 - uninteresting for future analysis

L0 thresholds on E_T / P_T of candidates

Public event variables
LO Pile-up System

Detector components
- 2 silicon planes upstream of nominal IP, part of the Vertex Locator (VELO)

Strategy: identify multi-PV events
- calculate z of vertices for all combinations of A & B
- find highest peak in histogram of z
- remove hits contribution to that peak
- find the second highest peak
 - 2-interactions crossings identified with efficiency ~60% and purity ~95%

Output for L0DU
- pile-up system (hit) multiplicity
- number of tracks on second peak/vertex
LO Calorimeter Trigger (1/2)

- ECAL and HCAL
 - ECAL: ~6000 cells, 4x4 to 12x12 cm²
 - HCAL: ~1500 cells, 13x13 to 26x26 cm²
- Scintillator Pad Detector (SPD)
- Preshower (Prs)
Strategy

- identify high-E_T hadrons / e’s / γ’s / π^0’s using all 4 sub-detectors:
 - ECAL and HCAL
 - large energy deposits \leftrightarrow E_T in 2x2 cells
 - Scintillator Pad Detector (SPD) & Preshower (Prs)
 - used for charged/electromagnetic nature of clusters, respectively (PID)

Output for LO Decision Unit (LODU)

- highest-E_T candidate of each type
 - hadron / e / γ / 2 π^0’s (“local” and “global”)

- global event variables
 - total E_T in HCAL \leftrightarrow rejection of empty events
 - SPD hit multiplicity \leftrightarrow rejection of busy events
Detector components

- M1 – M5 muon stations (4 quadrants each)

Strategy

- straight-line search in M2–M5 and extrapolation to M1 for momentum determination
- momentum determination from M1-M2 assuming muons from primary vertex
 (using a look-up table):
 \[\sigma_p/p \sim 20\% \text{ for b-decays} \]

Output for LODU

- 2 muon candidates per each of the 4 quadrants
LO Trigger Hardware Status

- for general status / commissioning of LHCb:
 - see Lluís Garrido’s / Gloria Corti’s talks

LO Trigger

- commissioning due to start early 2007
 - ready for end of Summer 2007
- L0 candidates selection/validation cards ready for production

Muon System for LO

- chambers production and tests progressing well (tests with cosmics also performed)
- chambers installation to start now in October …
- full L0-muon trigger electronics chain being tested

Calorimeter for LO

- all CAL parts installed; ECAL & HCAL being commissioned, SPD, Prs will follow …
- L0-CAL trigger tests with realistic configuration in Autumn ‘06
L0 Decision Unit (1/2)

Calorimeter
- total E_T in HCAL
- SPD multiplicity
- highest- E_T candidates: h, e, γ, 2 π^0's

Muon system
- 2 μ candidates per each of 4 quadrants

Pile-up system
- total multiplicity
- # tracks in second peak

L0 Decision unit
- cuts on global event variables
- thresholds on the E_T candidates

1 MHz

L0DU report
LO Decision Unit (2/2)

Global Event Variables applied first …

<table>
<thead>
<tr>
<th>Global event cuts</th>
<th>Cut</th>
<th>Rate (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma E_T)</td>
<td>5.0 GeV</td>
<td>(\sim 8.3)</td>
</tr>
<tr>
<td>SPD multiplicity</td>
<td>280 hits</td>
<td>(\sim 7)</td>
</tr>
<tr>
<td>Tracks in 2(^{nd}) vertex</td>
<td>3</td>
<td>(\sim 13)</td>
</tr>
<tr>
<td>Pile-up multiplicity</td>
<td>112 hits</td>
<td>(\sim 7)</td>
</tr>
</tbody>
</table>

... and then cuts on the \(E_T / P_T \) candidates

Di-muon trigger is special
- not subject to the global event selection
- \(P_T^{\mu_1} = P_T^{\mu_1} + P_T^{\mu_2} \) with \(P_T^{\mu_2} = 0 \) possible
- “tags” clean B-signatures

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Threshold (GeV)</th>
<th>Approx. rate (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadron</td>
<td>3.6</td>
<td>700</td>
</tr>
<tr>
<td>Electron</td>
<td>2.8</td>
<td>100</td>
</tr>
<tr>
<td>Photon</td>
<td>2.6</td>
<td>130</td>
</tr>
<tr>
<td>(\pi^0) local</td>
<td>4.5</td>
<td>110</td>
</tr>
<tr>
<td>(\pi^0) global</td>
<td>4.0</td>
<td>150</td>
</tr>
<tr>
<td>Muon</td>
<td>1.1</td>
<td>110</td>
</tr>
<tr>
<td>Di-muon</td>
<td>1.3</td>
<td>160</td>
</tr>
</tbody>
</table>
LO Performance

Dedicated sub-triggers most relevant for each « channel type »

<table>
<thead>
<tr>
<th>Event composition</th>
<th>b-bbar (%)</th>
<th>c-cbar (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generated, visible</td>
<td>1.1</td>
<td>5.6</td>
</tr>
<tr>
<td>after L0</td>
<td>3.0</td>
<td>10.6</td>
</tr>
</tbody>
</table>
Strategy

Independent Alleys:

Follow the L0 triggered candidate

→ Muon, Muon + Hadron,

Hadron, ECAL streams

Partial Reconstruction:

- A few tracks selected per alley (cuts e.g. on P_T, Impact Parameter, mass)
- Full reconstruction done at the end of the alleys

Summary Information:

decision, type of trigger fired, info on what triggered
Trigger Farm

- Event Filter Farm with ~1800 nodes (estimated from 2005 Real-Time Trigger Challenge)
- Sub-divided in 50 sub-farms
- Readout from Level-0 at 1 MHz ➔ 50 Gb/s throughput
- Scalable design ↔ possible upgrade

HLT algos CPU time tested on a real farm ➔ will fit in the size of the farm foreseen
The LHCb Trigger System

HLT Tracking / Reconstruction

- **Trigger Tracker (TT):**
 - $\sigma_{p/p} \sim 20-40\%$
 - (using B-field before magnet)

- **Tracker stations (T):**
 - $\sigma_{p/p} \sim 1\%$

- **Muon stations:**
 - $\sigma_{p/p} \sim 20\%$ standalone
 - $\sigma_{p/p} \sim 5\%$ matched
 - with VELO tracks

- **VErtex LOcator (VELO):**
 - $R\Phi$ geometry
 - ~ 70 tracks/event after L0

Reconstruction strategy

- Do reconstruction with VELO and select tracks with Impact Parameter
- Fast measurement of P_T (use TT or match VELO tracks with the muon stations)
- Refine P_T measurement (use T stations)
Hadron Alley - Strategy

L0-Hadron Entry
- 700 kHz

Hadron PreTrigger
- Reconstruct VELO Tracks and Primary Vertices
 - $\sigma_Z \sim 60 \, \mu m$, $\sigma_{X,Y} \sim 20 \, \mu m$
- Select tracks with $|IP|>150 \, \mu m$
- Measure P_T adding hits in Trigger Tracker:
 - $\sigma_p/p \sim 20-40\%$

Hadron Trigger
- Select tracks with $|IP|>100 \, \mu m$
- Measure P_T using Tracking Stations: $\sigma_p/p \sim 1\%$
- Make secondary vertices
Hadron Alley - Performance

Hadron PreTrigger
- Single hadron: IP > 150 μm, $P_T > 2.5$ GeV
- Double hadron: IP > 150 μm, $P_{T1} > 1.1$ GeV, $P_{T2} > 0.9$ GeV
- 14% b content
- Signal efficiency:
 - ~80% for e.g. $B \rightarrow \pi \pi$, $B_s \rightarrow D_s K$

Hadron Trigger
- $|IP| > 100$ μm, $P_T > 1$ GeV
- Make 2 track vertices:
 - Dist. Of Closest Approach < 200 μm
- Vertex “pointing” to PV
- 48% b content, 17% c content
- Signal efficiency: ~90% $B_s \rightarrow D_s K$, $B \rightarrow \pi \pi$

Rate (kHz)

Preliminary

Efficiency

- $B_s \rightarrow DsK$
- $B_s \rightarrow \Phi \Phi$
- $Bd \rightarrow \pi \pi$
- $Bd \rightarrow D^* \pi$
- $Bd \rightarrow D_o K^*$

~4 kHz
Muon Alley - Strategy

L0-μ Entry
- ~200 kHz

Muon Pre-trigger
- ~20 kHz

Muon Trigger
- ~1.8 kHz

Muon PreTrigger
- Standalone μ reconstruction: $\sigma_{p/p} \sim 20\%$
- VELO tracks reconstruction
- Primary vertex reconstruction
- Match VELO tracks and muons: $\sigma_{p/p} \sim 5\%$

Muon Trigger
- Tracking of VELO track candidates in the downstream T stations: $\sigma_{p/p} \sim 1\%$
- Refine μ identification:
 - match long (VELO-T) tracks and muons
Muon Alley - Performance

Muon PreTrigger
- $b \rightarrow \mu \sim 11\%$
- Signal efficiency: $\sim 88\%$

Muon Trigger
- Single muon
 - $p_T > 3\text{GeV}$ and IPS > 3
 - $B \rightarrow \mu$ content 60%
- Dimuon
 - mass $> 0.5\text{GeV}$ and IPS $> 100\mu m$
 - J/ψ: mass $> 2.5\text{GeV}$ (no IP cut!)
- Signal efficiency: $\sim 87\%$

- ~ 20 kHz
- ~ 1.8 kHz

Dimuon mass (MeV): $< 1s$ of LHCb
Inclusive Streams

Strategy
- Full tracking reconstruction at a few kHz
- Select Inclusive streams (e.g. D*, D_s, Φ, ...)

D* Inclusive Stream
- Clear signal of \(D^* \rightarrow D^0(K^-\pi^+)\pi^+ \)
- With very high statistics
- Useful to calibrate Particle Identification

Muon Inclusive Streams
- **Single Muon**: enhanced b-sample: \(B \rightarrow \mu X \)
 - 70% B-purity, enables trigger-check on unbiased other B-meson
 - Could be used for studying the tagging performance
- **Dimuon**:
 - \(J/\psi, \Psi(2S) \), etc.
 - Propertime resolution studies from prompt \(J/\psi \) events
 - Use narrow mass to study alignment, momentum calibration due to B-field
 - Select a di-muon with no lifetime bias!

\(J/\psi \) from \(B \rightarrow J/\psi K_s \): 17 MeV width
Exclusive Selections

Exclusive selections
- Use common available reconstructed and selected particles ($D_s, D^0, K^*, \Phi, \ldots$)
- Wide B-mass windows (typically ~ 500 MeV)
- Efficiency: e.g. ~90\% for $B \rightarrow \pi\pi$

$B_s \rightarrow D_s K$

$B_s \rightarrow D_s \pi$

$\phi \rightarrow K K$

$B_s \rightarrow \phi \gamma$

$B_s \rightarrow \phi \phi$

$B_s \rightarrow D_s \pi$

$D_s \rightarrow K K \pi$

π, K

Off-line $B \rightarrow \pi\pi$

$\sigma = (15.29\pm 0.46) \text{MeV/cm}^2$

$\mu = (5278.72\pm 0.56) \text{MeV/cm}^2$

$\chi^2/\text{ndf} = 12.24/14$

On-line $B \rightarrow \pi\pi$

$\sigma = (31.85\pm 1.10) \text{MeV/cm}^2$

$\mu = (5284.81\pm 1.30) \text{MeV/cm}^2$

$\chi^2/\text{ndf} = 46.43/36$

~200 Hz
Outlook

- **LHCb Triggers in good shape**

- **Level-0**
 - strategy well defined
 - good performance for B-decays
 - rather flexible, robust, with built-in redundancy
 - production of hardware components well under way
 - commissioning early 2007

- **HLT**
 - strategy details being finalized
 - exploitation of Level-0 triggering information
 - high efficiency for B-decays
 - flexible and robust