The Trigger System of LHCb

Eduardo Rodrigues, CERN

I. “Facts” of Physics and trigger strategy
II. Trigger overview

III. Level-0
- components
- decision unit
- status and performance

IV. Level-1
- basic principles
- decision
- status and performance

V. HLT - High Level Trigger
- basic principles
- exclusive and inclusive strategies

VI. Summary
VII. Open questions and ongoing studies
I. “Facts” of Physics ...

LHC environment

- pp collisions at $E_{CM} = 14$ TeV
- $\langle L \rangle = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} = 2 \times 10^5 \text{ mb}^{-1} \text{ s}^{-1}$
- $\Delta t_{\text{bunch}} = 25 \text{ ns} \leftrightarrow \text{bunch crossing rate} = 40 \text{ MHz}$

Cross sections

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Value</th>
<th>Event rate</th>
<th>Yield / year</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{total}</td>
<td>$\sim 100 \text{ mb}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{visible}</td>
<td>$\sim 60 \text{ mb}$</td>
<td>$\sim 12 \text{ MHz}$</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{(c\text{-cbar})}$</td>
<td>$\sim 3.5 \text{ mb}$</td>
<td>$\sim 700 \text{ kHz}$</td>
<td>$\sim 7 \times 10^{12} \text{ pairs}$</td>
</tr>
<tr>
<td>$\sigma_{(b\text{-bbar})}$</td>
<td>$\sim 0.5 \text{ mb}$</td>
<td>$\sim 100 \text{ kHz}$</td>
<td>$\sim 10^{12} \text{ pairs}$</td>
</tr>
</tbody>
</table>

Expected B-signal rates

- branching ratio $\sim 10^{-9} - 10^{-4}$
- $10 - 10^6 \text{ events / year ?}$

B-hadrons are heavy and long-lived!
... and trigger strategy

3-level trigger system

<table>
<thead>
<tr>
<th>Level</th>
<th>description</th>
<th>trigger rate [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-0</td>
<td>high E_T particles, output 1 MHz, custom hardware</td>
<td>10^8</td>
</tr>
<tr>
<td>Level-1</td>
<td>high E_T /IP particles, output 40 kHz, software</td>
<td>10^7</td>
</tr>
<tr>
<td>HLT</td>
<td>full reconstruction, output ~200 Hz, software</td>
<td>10^6</td>
</tr>
</tbody>
</table>
II. Trigger overview

L0: high E_T / P_T particles
- hardware trigger with fixed latency
- pipelined operation, fixed latency of 4 μs
- rate reduction $40 \, MHz \rightarrow 1 \, MHz$

L1: high E_T / P_T & high impact parameter particles
- software reconstruction on part of the data (from a few sub-detectors)
- algorithm runs on large PC farm, average latency of 1 ms
- rate reduction $1 \, MHz \rightarrow 40 \, kHz$

HLT: high E_T / P_T & high IP particles & displaced vertices & B-mass & …
- software - full event reconstruction
 - tracking / vertexing with accuracy close to offline
- selection and classification of interesting physics events
- inclusive / exclusive selections run
- algorithm runs on large PC farm (shared with L1)
- rate reduction $40 \, kHz \rightarrow \sim 200 \, Hz$
Goal

- select high E_T / P_T particles
 - hadrons / electrons / photons / π^0's / muons
- reject complex / busy / empty events
 - more difficult to reconstruct in L1 & HLT
 - take longer to reconstruct in L1 & HLT
 - uninteresting for future analysis

III. Level-0

L0 thresholds on E_T / P_T of candidates

- hadrons / electrons / photons / π^0's / muons

- more difficult to reconstruct in L1 & HLT
- take longer to reconstruct in L1 & HLT
- uninteresting for future analysis
L0 calorimeter trigger

Detector components
- ECAL and HCAL
 - large energy deposits \leftrightarrow E_T in 2x2 cells
- Scintillator Pad Detector (SPD) & Preshower (Prs)
 - used for charged / electromagnetic nature of clusters, respectively (PID)

Strategy
- identify hadrons / e / γ / π^0's using all 4 sub-detectors

Output for L0DU
- highest-E_T candidate of each type
 - hadron / e / γ / π^0 local & global
- global event variables
 - total E_T in HCAL \leftrightarrow rejection of empty events
 - SPD hit multiplicity \leftrightarrow rejection of busy events
L0 muon trigger

Detector components
- M1 - M5 muon stations (4 quadrants each)

Strategy
- Straight-line search in M2-M5
 and extrapolation to M1 for momentum determination
- Momentum determination from M1-M2
 assuming muons from primary vertex
 (using a look-up table)

Output for L0DU
- 2 muon candidates per each of the 4 quadrants
L0 pile-up system

Detector components
- 2 silicon planes upstream of nominal IP

Strategy
- calculate z_{vtx} of vertices for all combinations of A and B
- find highest peak in histogram of z_{vtx}
- remove hits contribution to that peak
- find the second highest peak

Output for L0DU
- pile-up system multiplicity
- height of second peak (with sum of directly adjacent bins)
 - also the z-position is transferred, together with same info for 1st peak
L0 decision unit

- **Calorimeter**
 - SPD multiplicity
 - total E_T in HCAL
 - highest- E_T candidates: h, e, γ, π^0 local, π^0 global

- **Muon system**
 - 2 μ candidates per each of 4 quadrants

- **Pile-up system**
 - total multiplicity
 - # tracks in second peak

- **L0 Decision unit**
 - cuts on global event variables
 - thresholds on the E_T candidates

- **L0DU report**
L0 decision unit

Global event variables applied first …

<table>
<thead>
<tr>
<th>Global event cuts</th>
<th>Cut</th>
<th>Rate (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma E_T)</td>
<td>5.0 GeV</td>
<td>(\sim 8.3)</td>
</tr>
<tr>
<td>SPD multiplicity</td>
<td>280 hits</td>
<td>(\sim 7)</td>
</tr>
<tr>
<td>Tracks in 2(^{nd}) vertex</td>
<td>3</td>
<td>(\sim 13)</td>
</tr>
<tr>
<td>Pile-up multiplicity</td>
<td>112 hits</td>
<td></td>
</tr>
</tbody>
</table>

… and then cuts on the \(E_T / P_T \) candidates

Di-muon trigger is special
- \(P_{T\mu_1} = P_{T\mu_1} + P_{T\mu_2} \) with \(P_{T\mu_2} = 0 \) possible
- “tags” clean B-signatures
- not subject to the global event selection

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Threshold (GeV)</th>
<th>Rate (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadron</td>
<td>3.6</td>
<td>705</td>
</tr>
<tr>
<td>Electron</td>
<td>2.8</td>
<td>103</td>
</tr>
<tr>
<td>Photon</td>
<td>2.6</td>
<td>126</td>
</tr>
<tr>
<td>(\pi^0) local</td>
<td>4.5</td>
<td>110</td>
</tr>
<tr>
<td>(\pi^0) global</td>
<td>4.0</td>
<td>145</td>
</tr>
<tr>
<td>Muon</td>
<td>1.1</td>
<td>110</td>
</tr>
<tr>
<td>Di-muon</td>
<td>1.3</td>
<td>145</td>
</tr>
</tbody>
</table>
L0 status

Software
- packages up-to-date (honest simulation) and ready for DC'04
 - L0 Muon package re-written recently
 - new L0Checker package for performance checks
 and providing information for subsequent studies of L0

Optimization
- L0 bandwidth division performed for the Trigger TDR
- DC'04 data will provide means for performance cross-checks
 and further studies

Performance
- hadronic channels: $\varepsilon \sim 50\%$
- electromagnetic channels: $\varepsilon \sim 50-70\%$
- muon channels: $\varepsilon \sim 90\%$
L0 performance

Each curve corresponds to considering separately the combination L0 trigger = sub-trigger + global event cuts

(di-electron trigger “à la di-muon trigger”)
L0 performance

Single-channel inclusive curves

![Graph showing M.B. retention (MHz) vs. L0 efficiency (%)](image)

- Hadron
- Muon
- Electron
- Photon
- Di-muon
- Pi0 local
- Pi0 global

\[B_s \rightarrow D_s K \]

L0 bandwidth division optimization

![Graph showing L0 efficiency (%) vs. L0 output rate (MHz)](image)

- \(B_d \rightarrow \pi \pi \)
- \(B_s \rightarrow K^0 \gamma \)
- \(B_s \rightarrow J/\psi(\mu\mu)\varphi(KK) \)
- \(B_d \rightarrow J/\psi(\text{ee}) K_s(\pi\pi) \)
IV. Level-1

Goal
- select events with long-lived particles and high P_T
 - multiple scattering can fake high impact parameters → need P_T measurement as well

Detector components
- VELO and TT stations (+ L0 information)

Strategy
- fast 2D tracking in VELO (forward and backward tracks)
 - R-Z straight-line tracking (VELO R-sensors only)
- primary vertex reconstruction (VELO sector number is used as ϕ measurement)
- selection of tracks with large IP ($IP \in [0.15, 3.0]$ mm)
- matching to L0 calorimeter and muon “objects”
- 3D tracking for those selected tracks
 - because P_T measurement from extrapolation to TT necessitates 3D tracks
- P_T measurement on selected tracks
- issue a L1 decision based on the $\log(P_{T1}) + \log(P_{T2})$ of these 2 tracks and on the “bonus” from the L0 matching
L1 reconstruction

Impact parameter measurement
- use VELO stations
 - R-Z projection contains most of the IP information

P_T measurement
- use TT for extrapolation of tracks
 - and momentum determination
- $\sigma(\mathrm{P_T}) / \mathrm{P_T} \sim 30\%$

Clean B-signatures
- $\mathrm{P_T}$ can also be determined from a matching to L0 candidates!
 - VELO tracks are matched to L0 muons / calorimeter clusters
 - high $E_T e / \gamma$, high mass $\mu\mu$
- extra information used in the making of the L1 decision ...
L1 decision

Input from L1 reconstruction
- P_T of 2 highest-P_T tracks among those with signed IP $\in [0.15, 3.0]$ mm
- "bonus" L0-matched objects

$L1$ Decision unit

$L1$ score

• L1 decision based on a 1-dim. cut on $\log(P_{T1})+\log(P_{T2})$ (+ bonus)

4% M. B. retention
Example of “bonus” …

Di-muon invariant mass @ L1

- J/Ψ peak visible
- B_s peak visible

Graphs:

- $B_d \rightarrow J/\psi(\mu^+\mu^-) \phi / K_S$
- $B_s \rightarrow \mu^+\mu^-$
- $B_d \rightarrow \mu^+\mu^- K^*$
- Minimum Bias

Eduardo Rodrigues

NIKHEF B Physics Seminar, 18th June 2004
L1 status

Software
- new version of whole L1 packages ready for DC'04
 - tracks reconstruction
 - primary vertex finder (also treatment of multiple PV)
 - decision package re-written (very modular <-> flexibility)

Optimization
- whole reconstruction has been optimized/tuned on pre-production data
 - tracks reconstruction (track quality cuts, clone killing)
 - VELO-TT track matching (quality cuts)
 - vertex finder (cuts on min. # tracks, min. distance between vertices)

Performance
- efficiencies expected to be ~10% better compared to TDR!
 - improvements mainly due to faster and better reconstruction
 (improved tracking, bug fixed in handling of vertices)
- fast algorithm within the design time budget: ~ 4.7 ms (compared to ~ 8 ms @ TDR time)
L1 performance

Primary vertex resolution (of only the 1st PV)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>χ²/ndf</th>
<th>1st PV resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>122.3</td>
<td>52</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.7131E-03</td>
<td>-0.3741E-04</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.2122E-01</td>
<td>0.2260E-01</td>
</tr>
</tbody>
</table>

- **σₓ** = 21 µm
- **σᵧ** = 23 µm
- **σᶻ** = 86 µm

(Slightly worse than for TDR)
V. HLT - High Level Trigger

Re-reconstruct L1 from RawBuffers

Classify

Lepton-like

Rest

Find/clean μ/e “Lepton column”

Inclusive selection, generic
Reject uds, ε > 90%

Reconstruct all long tracks
Particle pre-selection

Specific algorithms
In/exclusive selections

Generic algorithm

Full reconstruction / Storage
HLT – exclusive selections

Case of \(B^0 \rightarrow h \ h \)

Efficiency: offline selected

- offline selections were used as baseline, applied after L0xL1
- offline tracks and vertices used
- unique set of HLT (loose) cuts for the 4 “hh” channels
HLT – L1 confirmation

Idea
- re-do the L1 algorithm @ HLT
 - with improved tracking ($\sigma(p)/p \sim 0.6\%$)

Performance
- ~ 5% efficiency loss for 1/4 minimum bias retention
 (i.e. @ 20kHz)
HLT – generic algorithms

- The discriminating variables:
 - **Kinematics:**
 - \(L_{1\text{con}} = \log(pt_0) + \log(pt_1) + \text{bonus} \)
 - \(pt_0, pt_1 \) from T1-T3 measurements
 - Bonus = function from L0 objects
 - \(E_T \) from cal (gamma,e)
 - **Geometry**
 - Z- Flight distance:
 - Between primary and secondary vertex

![Graph showing z distance primary-signal (mm)](image)

\[L_{1\text{con}} = \log(pt_0) + \log(pt_1) + \text{bonus} \]
Results:

- Relax scenario: cuts\{ip\'=1.5mm,'chi2\'=2.5\}
- Output rate 10kHz = 8 (generic) +2 (dimuon) at >90% efficiency
- Point of view: Inclusive: from right, Generic: from Left
HLT status

Software
- new version of whole Trg packages has just been released for DC’04
 - tracking
 - primary vertex finder

Optimization
- to be done with DC’04 data
 - tracking optimization done to some extent on “old” data

Performance
- the best possible ...
- fast algorithms within the design time budget
- exclusive selections show that individual signal channels give
 HLT rates ~ 10 Hz for \(\varepsilon > 95\% \)
VI. Summary

TDR performances

Event composition

<table>
<thead>
<tr>
<th>Event composition</th>
<th>b-bbar (%)</th>
<th>c-cbar (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>generated</td>
<td>1.1</td>
<td>5.6</td>
</tr>
<tr>
<td>after L0</td>
<td>3.0</td>
<td>10.6</td>
</tr>
<tr>
<td>after L1</td>
<td>9.7</td>
<td>14.2</td>
</tr>
</tbody>
</table>
VII. Open questions

ongoing studies

Level-0

- implementation of di-electrons
- monitoring / performance from real data

Level-1

- L1 decision strategy
- improved usage of L0 muon and calorimeter information
- treatment of events with multiple primary vertices
- nature of minimum-bias / signal events passing L1

HLT

- development of reconstruction
- development of generic / exclusive selections
- RICH information @ HLT -> improvement in physics reach from PID?
 - main use: K/π separation for similar final states (e.g. B0 -> ππ, Kπ)
 - lower rates of channels with high rates without K/π separation
 - efficient reconstruction of inclusive decays (e.g. B -> K+ X)