Azimuthal Asymmetries in Neutral Current Deep Inelastic Scattering

Eduardo Rodrigues
University of Bristol

- Motivations
- Basics of Neutral Current DIS at HERA
- Phi Asymmetries with Hadrons and Jets
- Distinguishing Quark/Gluon Jets and QCDC/BGF Events at HERA: a Neural Network Approach
- Conclusions

IoP HEPP Conference 2001
Motivations

- **Origin of Azimuthal asymmetries:**
 Spin of scattering photon and partons.
 - **Non-perturbative:** intrinsic transverse momentum of partons
 - **Perturbative:** QCD corrections

- **Fixed target experiments** investigated a kinematical region where non-perturbative effects dominate and are sufficient to explain the data

- **At HERA** QCD effects should dominate
 ➡ clean and powerful test of pQCD
Kinematic Variables in DIS

- Negative of 4-momentum transfer squared

\[Q^2 = -q^2 = -(k - k')^2 \equiv 2E_e E'_e (1 - \cos \theta) \]

- Momentum fraction of struck parton in proton

\[x = \frac{Q^2}{2P.q} \equiv \frac{Q^2}{sy} \]

- Fractional energy transfer to the proton

\[y = \frac{P.q}{P.k} \equiv 1 - \frac{E'_e}{2E_e} (1 + \cos \theta) \]

(\(\theta \) is the scattered lepton polar angle in the Lab. frame)

E. Rodrigues
NC DIS at HERA

Described in QCD, up to order α_s, by 3 types of diagrams:

(a) QCD-Compton (QCDC)
(b) Boson-Gluon Fusion (BGF)
(c) “Quark Parton Model” event (QPM)

\[e^\pm + p \rightarrow e^{\pm'} + X \]
Theoretical Phi Distribution

All 3 diagrams contribute to

\[
\frac{dn}{d\phi} \propto A + B \cos \phi + C \cos 2\phi + D \sin \phi
\]

Moments of distribution:

\[
< \cos \phi > = \frac{B}{2A}
\]

\[
< \cos 2\phi > = \frac{C}{2A}
\]

\[
< \sin \phi > = \frac{D}{2A} \quad (= 0 \text{ for non-polarised NC DIS})
\]

- main contribution from QCDC diag.
- transverse-longitudinal interference

- main contribution from BGF diag.
- interference of +1 and −1 helicity transverse amplitudes
General Description of the Analyses

Using data taken with the ZEUS detector in 1996-97
(38 pb⁻¹)

Kinematic range:

\[0.01 < x < 0.1 \quad \text{and} \quad 0.2 < y < 0.8 \]

- good detector acceptance
- good hadronic activity

Standard DIS cleaning cuts
Azimuthal Asymmetries with Hadrons

- Analysis in hadronic centre-of-mass frame

\[\gamma^* P \leftrightarrow \gamma^* P \text{ collinear frame needed} \]

Selection of “leading” particles:

\[0 < z_h = \frac{P \cdot p_h}{P \cdot q} < 1 \]

\(p_h \) is the momentum of hadron h

- cut \(z_h > 0.2 \)

(main contribution from quark fragmentation)
Results for the Phi Distributions of Hadrons

Bin–by–bin corrected data

- For $p_T > 0$ GeV
- For $p_T > 0.5$ GeV
- For $p_T > 1$ GeV

- For $p_T > 1.5$ GeV
- For $p_T > 2$ GeV
- For $p_T > 3$ GeV

Fit with theoretical distribution

- Cosϕ term present at all P_T values
- Cos2ϕ term arises as P_T cut

E. Rodrigues
Moments of Phi Distributions for Hadrons

\(< \cos \phi > \hspace{5mm} \text{negative}\)

\(< \cos 2\phi > \hspace{5mm} \text{positive}\)

- Data qualitatively agrees with QCD LO predictions

- QCD LO calculations used mean intrinsic \(k_T\) and frag. \(p_T\) of 0.6 GeV

E. Rodrigues
Azimuthal Asymmetries with Jets

Study of jets ➤ inclusion of the whole hadronic final state

Study performed in the Breit frame

Jet cuts:

\[E_{T,jet} > 8 \text{ GeV} \]

\[-2. < \eta_{jet} < 2. \]

Cuts exclusively in the Breit Frame!

No bias introduced in the \(\phi \) distributions!

E. Rodrigues
K_T Cluster Jet Algorithm

- For all particles, d_i and d_{ij} are calculated:

 $$d_i = E_{T,i}^2$$
 $$d_{ij} = \min(E_{T,i}^2, E_{T,j}^2) \cdot (\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2)$$

- $\min(d_i, d_{ij}) = d_{ij}$ ➞ particles i,j merged according to a recombination scheme

- $\min(d_i, d_{ij}) = d_i$ ➞ particle i is a “protojet”

- Procedure repeated for all “non,protojets” until no more are left.

- Jets are the “protojets” with $E_T > E_{T}^{cut}$

The p_T recombination scheme was used.
Asymmetries for the “Hard” Partons

Studies with MC event generator Lepto

Predicted asymmetries are different for QCDC and BGF events and for quark and gluon initiated jets

⇒ How to discriminate between them? A 1st attempt in DIS ...
Separation of Quark and Gluon Jets

- QCD predicts gluon jets to
 - have a broader p_T spectrum
 - exhibit a softer hadron spectrum
 - have a higher multiplicity
 than quark jets

- Study of internal structure of jets provides a
 potential way of distinguishing q- from g- jets

 ➪ investigation of jet-structure sensitive variables
Jet Structure Sensitive Variables

- **Subjet Multiplicities:**

 Clustering procedure repeated for all particles in a jet until every pair \((i,j)\) satisfies \(d_{ij} > y_{cut} \cdot (E_{T}^{jet})^{2}\)

 The remaining “objects” are called subjets.

- **Integrated Jet Shape:**

 \[
 \Psi(r) = \frac{1}{N_{jets}} \sum_{jets} \frac{E_{T}(r)}{E_{T}(r = 1)}
 \]

- **Fodor Moments:**

 \[
 F_{mn} = \sum_{i} \left[\frac{p_{\perp,i}}{E_{T}^{jet}} \right]^{m} \eta_{\perp,i}^{n}
 \]
Discriminating Variables

4-vector studies with Lepto generator
Neural Network Approach to Jet & QCD Event Type Tagging

- MLPfit package used for the NN setup
- Several architectures of Multi-Layer Perceptrons studied
- Several discriminating variables studied:
 - Jet’s pseudorapidity
 - Subjet multiplicity at low y_{cut}
 - Integrated jet shape
 - Jet’s multiplicity (F_{00}, F_{01})
 - ...

E. Rodrigues
4-vector Study of the NN Tagging

Purities for tagging:

\[\pi_{QCD}^{\text{tag}} \approx 60 \% \]

\[\pi_{BGF}^{\text{tag}} \approx 70 \% \]

Efficiencies for tagging:

\[\varepsilon^{\text{tag}} \approx 30 \% \]
Conclusions and Outlook

- Azimuthal asymmetries clearly observed in DIS both with hadrons and with jets

- A NN approach to jet and QCD event type tagging in DIS has shown promising results:
 1st time ever attempted at HERA

- Further studies needed at hadron/detector level

- HERA/ZEUS upgrade will give a boost to these precision tests of QCD at HERA:
 - polarisation $\rightarrow \sin \phi \neq 0$ in NC
 - more stats \rightarrow CC studies where $\sin \phi$ and $\sin 2\phi$ are also present